A REWARD BOOK

wVEARIA CRUZEIRO DO 8&
Av. S%o Jofo 1.8317
GEP 01035-100
Tolofons: 223-048

IREVORRIOMS

RESTON PUBLISHING COMPANY, INC.
Reston, Virginia

A Prentice-Hall Company

ISBN 0-8359-9525-9
0-8359-9524-0 (pbk.)

This book was created using WordStar on
a Panasonic JDB00 with Diablo 630 printer
and Courier 10 typeface.

Copyright 1981 PHIPPS ASSOCIATES
All rights reserved.

Photocopying of this book is expressly
prohibited. The purchaser for full retail
price may make a magnetic tape copy of the
programs and make security copies. Making
more than five copies is prohibited as is
disposing of such copies to third parties,
even by way of a gift.

The U.S. Edition of THE Z2X81 POCKET BOOK

is produced by Reston Publishing Company,
Inc., A Prentice-Hall Company, Reston,
Virginia, under license of Phipps Associates,
99 East Street, Epsom, Surrey, England

KT17 1EA.

Sales restricted to the United States, its
territories and possessions, and Canada.

0 9 8 7 6 5 4 3 2

Printed in the United States of America.

TABLE OF CONTENTS

Page

1. Introduction 5
Pinning the Tail on the Donkey 9

2. Searching for Strings 11
Ski Run 14
3. Efficient Programming 18
Pro-Am Golf Putting 32
4. Eyeball Characters 37
Paint-a-Pic 42
5. Hints 'n' Tips 44
Digital Clock 53
Artist 56
6. Decimal Justification 59
Standard Deviation 64
Jaws 65
7. Using Machine Code 68
Dice Simulation 80
8. Numeric Conversion 83
Fruit Machine 85
9. ZXB81 Adventure - Create your Own 88
City of Alzan 113
Appendices:
Appendix A - ZX80 (4K) to ZX81
Conversion 121
Appendix B - ZX81 Module
Selector Listing 123
Appendix C - ZX81 Basic
Command Summary 126

Appendix D - Error Code Summary 128

Throughout the book:
Stocking Fillers - 1K programs to take
up blank space.

Graphics by:
Chiltern Creative Services
Suffolk House,

313 London Road,

High Wycombe, Bucks
Tel: High Wycombe 35353

INTRODUCTION

1.1 About This Book

The ZX81 has followed rapidly on the heels of the ZX80,
which has outsold almost every other type of personal computer
made. The main reasons for its success are its low cost and
simplicity - a unique combination.

In March 1981, Sinclair released the new %ZX81 - more fea-
tures, better casing, and even lower cost! How can it possibly
fail to be another winner? Most of the computer press has given
glowing reports of its capabilities. If you are learning, then it
really is ideal.

This is our second book along these lines (the first is The
ZX80 Pocket Book) and the content is almost entirely new. I have
attempted to keep a similar quality to this book, although the
style is hopefully less clinical (we all learn as we go along...)
and the layout less fixed.

If you have a ZX80, you should purchase an 8K ROM upgrade
before launching too deeply into this book, as all the programs
have been written for the ZX81, and not for the ZX80 with "And
ZX81!" just printed on the cover. This is important as the two
machines are really quite different.

The vast majority of ZX81's sold will not have the addi-
tional 16K RAM pack fitted and so there is quite a large selec-
tion of assorted "goodies" for these people. Personally, T feel
that the machine just cannot be used to its best without this
extra RAM pack and I would strongly urge you to buy one if the
computing "bug" gets hold of you in any way. Perhaps Santa may be
feeling a bit more extravagant - who knows?

Newcomers to computing will hopefully find scmething more
cnallenging than just another set of games to copy and run - I

Introduction

sincerely hope that you will learn along the way and maybe have a
laugh or two. If you are relatively new to programming, you will
fina it very easy to fall into the habit of purely typing in
programs written by other people and running them. This is not
programming - most people can type. Try to develop a style of
your own, using some of the ideas in this book to fuel your
imagination. There is much more pleasure to be gained from
running a program that is your own handiwork - especially if your
friends become rather attached to it.

I have also tried to expand on the "useful subroutines", as
I think these give a much clearer picture of how certain features
can be highlighted and how you can stretch the ZX81 to its
utmost. Again, newcomers (isn’'t there a better word?) will find
something to learn from these as they can be incorporated into
new programs very easily.

In case you're lazy and can't be bothered to type some of
the larger programs, a cassette tape is available which contains
all the programs in this book. Write (or phone) to the address

{or number) given at the front of the book for details of price
etc.

One last point - if you find a mistake in a program, 1 would
be only too pleased to know about it, but bitter experience tells
that most errors are simple typing mistakes that can go unnoticed
for quite a while. These mistakes (whether yours or mine) can
tend to detract from your enjoyment of the program wnen you've
spent a considerable time typing it all in. Don't despair! By
obtaining a copy of the tape, you will find, I hope, that any
problem will vanish - it is certainly much easier for me to fix a
problem in the tapes than it is in the books - and I will endea-
vour to ensure that the tapes are always up-to-date with anything
found (plus a couple of extra "goodies" into the bargain!).

Wherever a program is contained on the tape (some of the
extremely small examples are not on the tape), you'll see
something like:-

Introduction

Tape name: "ALZAN"

....written alongside the program listing.

1.2 The Structure of this Book

I have used several of my own conventions throughout this
book, and this seems an appropriate point to mention them:-

Program listings

1)

2)

3)

All keyword commands are underlined.

All keyword functions and single keystroke "tokens"
(such as <> or >= etc) are printed in bold face.

Printed text which spreads onto more than one line does
not necessarily appear in exactly the same way that it
will appear on your screen when you type it. This is
for clarity of reading. An example (taken from the "Ski
Run" program) is:—

9060 PRINT " YOU MAY INITIALLY SELECT THE",

"DIFFICULTY OF COURSE YOU WISH",
"TO ATTEMPT."

This has been laid out so that the lines of text appear
in columns as they will when the program is run. Notice
that the first two lines end with a comma, indicating
that there is more to follow. This comma must be typed,
and the next line typed immediately following, so that
as you enter them, you will see:—

9060 PRINT " YOU MAY INITIALLY S
ELECT THE","DIFFICULTY OF COURSE
YOU WISH","TO ATTEMPT."

Introduction

4) The listings are annotated with my comments to assist
you in studying my programming methods. These are
placed on the right-hand side of the page and enclosed
by a bracket - e.g.

200 LET %=1 (this is a comment

Text Passages

The text contains many small working examples of pro-
grams and subroutines for you to run. Some of these
programs are designed to highlight a particular fea-
ture, especially in the section "Efficient Program-
ming", where I have included many "benchmark" programs.
These should be timed so that you can see the various
effects that different methods of programming have on

the resulting program. A set of results is included at
the end of the book.

Pinning the Tail on the Donkey

Suitable for : 1K RAM

Here's a piece of fun to
start with - try to pin the
tail on the donkey. The game is
run in fast mode so that you
cannot see the donkey all the
time. As soon as you press a
key, the screen blanks and you
have to guess how long to keep
pressing the key. When you take
your finger off, the tail will
stretch across to the donkey.
If you succeed in touching the
donkey, then your score is

given. If you wait too long, though, you may well cause the

donkey some damage!

Try to pin the tail on in the minimum number of "peeks".

The donkey is drawn in line 40, and should loock like (in

larger-size characters) :—

4,>
)
3)
4.}

Tape name: "DONKEY"

1 REM DONKEY
2 R

10 FAST

20 LET T=10

30 LET D=INT (RND*T)+19

(memory saver
(position donkey

40 PRINT AT 1,D;" ™™";AT 2,D;"ss=m";AT 3,D;"sm";AT 4,D;"=r"

(draw donkey

10

50
60
100
110

130
140
150
160
200
210

400
410
420
1000
1010

1020 IF C-D>=0 AND C-D<3 THEN UNPLOT X,39
IF INKEY$="" THEN RETURN
LET X=X+l

IF X<64 THEN GOTO 1000
PRINT AT 1,T;"OH DEAR."
RETURN

1030
1040
1050
1060
1670

Donkey

LET N=1

LET X=NOT N

PAUSE 4E4

POKE 16437,255

120 IF INKEYS$<>"" THEN GOSUB 1000
IF C>=D THEN GOTO 300

IF X=D*2-1 THEN GOTO 200

IET NeN+L

GOTO 100

(no. of turns
(starting position
(display

(check for key

(gone past donkey?
(pinned on properly?
(update no. of turns
{(have another go

PRINT AT T,T;"PERFECT";AT 14,0;N;" TURNS" (win!

GOTO 400
300 IF X<=63 THEN PRINT AT T,T;"OUCH."
INPUT ¥Y$
CLS
RUN
PLOT X,39

LET C=INT (X/2)

{lose.
(wait for another go

(draw the tail
(see if hit donkey
(...1f so, unplot.
(return if no key
(next position
(still on screen?
(gone off screen

SEARCHING FOR STRINGS

2.1 why search for strings?

Perhaps the use of a string-searching subroutine can best be
illustrated by an example. Imagine a program along these lines:-

100 PRINT "WHAT IS A BABY HARE CALLED?"
110 INPUT AS

Now what? When the program is run, any answer at all could
be given which contains the right word - "leveret". But the
string AS might have been typed as:-

A LEVERET
LEVERET
IT 1S CALLED A LEVERET

...and so on.

This is where the subroutine comes in. It allows you to
search for the existence of one string inside another, and to be
able to see if the string is not there. It is roughly equivalent
to the MicroSoft Basic INSIR function (for those of you who know
MicroSoft Basic).

Two variables are required by the subroutine:-—

A3 which contains the string to be scanned
WS which contains the string to look for within AS

On returning, variable X will contain either zero, in which
case A$ did not contain the string WS, or it will contain the
address of the first character of the first occurrence of WS
within AS. Here's the routine:-

11

Searching for Strings

9200 REM X=INSTR(A$,WS) (lape name: "INSTR"
9210 1F LEN w$=0 THEN GOTO 9290 (to stop error 3

9220 LET X=1 (initial character no.
9230 LET Y=LEN W$ {end character number

9240 IF Y>LEN A$ THEN GOTO 9290 (have we gone beyond end?
9250 IF WS=AS (X TO Y) THEN RETURN (is it in WS$?

9260 LET X=X+1 (otherwise next character
9270 LET Y=Y+l (also update end marker
9280 GOTO 9240 (try again

9290 LET X=0 (set to zero if not found
9295 RETURN (end subroutine

Let's see that first example program again, but this time

using our new "in-string" subroutine:—

12

100 REM SILLY QUIZ GAME (Tape name: “"QUIZ" - 16K
110 LET SCORE=0

115 LET TOTAL=0

120 LET Q$="WHAT IS A BABY HARE CALLED?"
130 LET W$="LEVERET"

140 GOSUB 8000

150 LET Q$="WHAT IS THE CAPITAL OF CANADA?"
160 LET W$="OTTAWA"

170 GOSUB 8000

180 LET OS$="HOW MANY DAYS ARE IN JULY?"
190 LET W$="31"

200 GOSUB 8000

210 LET G$="WHAT IS 54.2 * 29.3332"

220 LET W$=STRS$ (54.2%29.333)

230 GOSUB 8000

240 LET Q$="WHO IS THE GREATEST?"

250 LET W$="I AM"

260 GOSUB 8000

270 &E_]_T_ $S="WHEN WAS THE GREAT PLAGUE?"
280 LET W$="1665"

290 GOSUB 8000

300 LET Q$="WHO IS "RTHE IRCN LADY"™& 2"
310 LET W$="THATCHER"

320 GOSUB 8000

Searching for Strings

330 LET Q$="WHAT IS YOUR SCORE SO FAR?"
340 LET W$=STR$ SCORE
350 GOSUB 8000
400 SCROLL
410 SCROLL
420 PRINT "YOU SCORED ";SCORE;" OUT OF ";TOTAL
430 GOTO 9999
8000 SCROLL
8005 SCROLL
8010 PRINT Q8
8020 INPUT AS
8025 LET TOTAL=TOTAL+l
8030 SCROLL
8040 PRINT AS
8050 GOSUB 9200
8055 SCROLL
8060 IF X THEN GOTIO 8110
8070 PRINT "THAT IS WRONG"
8080 SCROLL
8090 PRINT "THE ANSWER IS "®",[s;"=="
8100 RETURN
8110 PRINT """";W$;""™" IS CORRECT"
8120 LET SCORE=SCORE+1
8130 RETURN
9999 STOP

Variable Q% holds the guestion, W$ holds the answer, and
subroutine 8000 asks the gquestion, inputs an answer and checks to
see 1f it is valid. As long as the answer entered contains the
keyword in WS, the score is updated. So it makes the program much
more fun to use, because there is no restriction on typing just a
single word or number. You type in what you want, and the
subroutine sorts it all out for you.

A couple of those questions are trick ones, but if you read
through the rest of this book, you'll find a way to ensure that
every answer you give to this guiz is correct - even if you
haven't seen the question. How's it done? I'll leave the answer
at the end of the book if you haven't found out by then...

13

Ski Run

Suitable for : 16K RAM

If you always wanted to
try the slalom runs in the
winter olympics, then here's
your big chance.

You must guide yourself
down the slope avoiding the
posts on the way. Use the "3"
and "8" keys to direct yourself
left and right accordingly.

The program as shown here
contains two different courses
which are chosen at random.
After the program listing, you

will find instructions on how you may alter courses or enter some

of your own.

1 REM *** SKI RUN ***
2 REM
3 REM
10 GOTO 100
20 REM CHECK FOR MOVEMENT
30 LET D=CODE INKEY$
40 IF NOT D THEN RETURN
50 IF D=33 THEN LET S=5-1
60 IF D=36 THEN LET S=S+1
70 LET S=S-INT (S/32)*32
80 RETURN
100 REM INITIALISE GAME
110 GOSUB 9000
120 GOSUB 8000
130 LET P=VAL C$ (1 TO 2)
140 LET S=VAL C$(3 TO 4)
150 LET H=0
1000 REM RUN THE COURSE

1010 FOR X=5 TO LEN C$-1 STEP 2

14

(Tape name: "SKI"

{get key code
(no valid key pressed
(alter skier position

(ensure skier on screen

(print rules
(select course

{course start position
(skier start position
(initial hits

(scan course string

Ski Run

1020 SCROLL

1030 PRINT AT 21,P;"*";AT 21,P+G;"*";AT 21,5;"v"

1040 GOSUB 20 (check for movement
1050 LET P=P+VAL C$ (X TO X+1) (update post position
1060 GOSUB 20 (another quick check..

1070 IF S<=P OR S>=P+G THEN LET H=H+l (has skier hit posts?

1080 NEXT X

2000 REM FINISHING LINE

2010 SCROLL

2020 FOR X=P TO P+G (print finishing line

2030 PRINT AT 21,X;"-";

2040 NEXT X

2100 SCROLL

2110 SCROLL

2120 PRINT "YOU HIT ";H;" POSIS"

2130 GOTO 9999

8000 REM SELECT COURSE

8010 REM SEE TEXT IN BOOK

8020 LET C$="141700000000-1-1-1-
1-106000001010200-1-1-100010200-
200-1-1-100000000010101010101~2~-
2-200000000010101010101010102020
2000000000000-1-1-1010101-1-1-1~
1-1-2-2-2-2-2-1-1000000010101010
101-2-2-2-2000000010102020202010
1010000000000000000"

8030 IF RND<0.5 THEN RETURN

8040 LET C$="0002000000000000000
00000000001010101010101010101000
00000020202020000-1-1-1-1-1-1-1-
10101010610000000000000000-1-1-1~
102020202010101-2-2-2-2-2-2-2-1~
1-1-1-10101-1-1000000000000"

8050 RETURN

9000 REM RULES

3010 CLS

9020 SLOW

9030 PRINT TAB 8;"*** SKI RUN *x*"

9040 PRINT

15

Ski Run

9050 PRINT " YOU MUST STAY IN BETWEEN THE",
"COURSE POSTS ALL THE WAY DOWN.",
" IF YOU HIT THE POSTS OR MOVE",
"OUTSIDE THE COURSE, YOU WILL",
"LOSE POINTS."

9060 PRINT " YOU MAY INITIALLY SELECT THE",
"DIFFICULTY OF COURSE YOU WISH",
"TO ATTEMPT."

9070 PRINT " USE THE ""5™" AND "“8"" KEYS TO",
"DIRECT YOURSELF LEFT AND RIGHT."

9080 PRINT

9100 PRINT "WHICH LEVEL ARE YOU?",
" (1) RANK AMATEUR",
" (2) AVERAGE SKIER",
" (3) DASHING EXPERT?"

9110 INPUT SKILL

9120 IF SKILL>0 AND SKILL<4 THEN GOTO 9200

9130 CLS -

9140 PRINT "SORRY? - ";

9150 GOTO 9100

9200 LET G=3+(4-SKILL)*2 (post width
9210 PRINT "ARE YOU READY? - ";
9220 FOR X=3 TO 1 STEP -1 (give 3 sec. delay

9230 PRINT X;"..";
9240 PAUSE 50

9250 NEXT X

9270 RETURN

Course selection is performed in the subroutine starting at
line 8000. You may prefer to ask for a course number to be
entered as the program is started, or just replace the two
courses given here. The rules for how to create yOur own courses
follow:-

After subroutine 8000 has finished, string variable C$ must
contain a course description in the following format:-

Cs$(l TO 2) starting position on screen of left-hand post

(the right-hand post position is calculated
from the degree of skill entered)

16

Ski Run

C$(3 TO 4) starting position of skier - this would
normally be the post starting position plus
two. If you want to be annoying, you can
start the player off outside the posts.

C5(5 TO) the rest of the string is a series of two-
digit numeric wvalues which represent the
value to add into the current post position
to give the next position. Do nct use values
greater than "02" or less than "-2",. as the
player cannot move the skier more than two
positions in any one "turn" (i.e. as each new
set of posts is printed).

A small but valid course description would be:-
15 17 00 00 01 01 -1 -1 -2 -2 00 00

This says:—

The post starting position is column 15, and the player
starts at column 17. On the first two "turns" the posts remain in
the same position. The next two turns move the posts over to the
right (positive value) by one position each time (01). The next
two turns move the posts to the left by one position each turn (-
1). The following two turns move the posts to the left by two (-
2) positions, while the final two turns leave the posts in this
position.

The program will automatically show a finishing line and the
number of "hits" made.

Since the speed of the game is approximately 3 turns per
second, an ideal course should take between 30 seconds and one
minute to run fully. Of course, (no pun) you may prefer to enter
a five minute course — there's no reason why you should not.

Beware that you keep your course within the boundaries of
the screen, otherwise you will be given error B when the program
runs. Your course should not go beyond column 22 or become
negative. The reason for not using columns beyond 22 is that the
width of the posts is 9 when an amateur is running the course.

17

EFFICIENT PROGRAMMING

In this section, we deal with efficient programming. This
can be handled in two ways:-

1) optimising memory
2) optimising run-times.

Depending on the particular program, a decision may be
needed to trade off memory usage over run-times. This type of
trade-off is all too commom on small computer systems and even
with the 16K RAM pack fitted, you may find that certain programs
(e.g. a full version of Star Trek) still require attention to
detail to fit in comfortably.

The Sinclair handbook gives guite explicit details of the
way in which programs and variables are stored inside the ZX81.
It may not be instantly apparent, however, that certain features
can add guite an overhead into your programs.

Let's look at the way each statement is stored.

3.1 Replacing literals

Assuming you have a 1K RAM ZX81 (if you have more, then this
section will not be quite so important to you), wnen you switch
the ZX81 on, you can have up to 899 bytes (maximum) available

since the system variables occupy 125 bytes - more than one tenth
of the total memory!

The screen buffer requires at least 25 bytes, since space is
taken as items are entered into the display buffer using PRINT or
PLOT commands. This does not apply when the 16K RAM pack is

18

Efficient Programming

fitted.

So you have roughly 850 bytes to share between program
statements, variables, display (when used), and some assorted
items used by the BASIC interpreter during the course of program
execution.

Each program statement requires:-

2 bytes to hold the line number (regardless of the
number of digits in the line number)

- 2 bytes to indicate the length of the statement

the number of bytes in the statement itself (this can
be easily calculated by the number of keystrokes
made in typing the line - see below)

- an extra six bytes for every numeric literal entered

one extra for a newline

Let's see a few examples of this:-

Statement Size in memory
10 LET X=Y 9 bytes in total - 2 for line

number, 2 for line length, 4
keystrokes (LET,X,=,Y), plus one
for newline.

300 LET X= 15 bytes in total - 2 for line
number, 2 for length, 4 keystrokes
(LET,X,=,1), 6 for the numeric
literal "1", and one for newline.

9000 DIM X(3,2) 24 bytes - 2 for line no., 2 for
length, 7 keystrokes (count them),

12 for the numeric literals "2" and
"3", one for newline.

1t should be rather obvious by now that the use of numeric
literals in a program is extremely wasteful of memory.

Why was the BASIC interpreter designed in this way? One very
good reason is that the conversion of literals into 5-byte

19

Efficient Programming

floating point values (and vice versa) is a slow process - you
may have noticed this when you PRINT some numeric expressions.
This comes back to our trade-off that was mentioned above. All
numeric literals are held in converted form in the program
statements so that the conversion time is not required when the
program is run. It was incurred as you entered the statement
(this is part of the syntax checking routines).

You can make good use of this knowledge - try to keep the
number of literals to a minimum. Your programs will become
smaller, thus leaving you room for a slightly larger program to
fit in.

There are several ways that you can use in order to avoid
using literals - some cause the program to run more slowly, some
are just more efficient ways of writing the program that may seem
odd to someone else.

One method is to put commonly used values into a variable
that is used instead of the literal value, for example:—

10 IF X<>1 THEN LET A=

(26 bytes
20 IF Y<>1 THEN LET B=

(also 26 bytes

...could be written as:-

5 LET U=1 (15 bytes
10 IF X<>U THEN LET A=U (14 bytes
20 IF Y<>U THEN LET B=U (also 14 bytes

The first method occupies 52 bytes of memory, while the
second only occupies 43 bytes - a saving of 9 bytes even though
there is an extra statement in the second program!

Unfortunately, this is not strictly accurate, as the second
program requires a variable U which is not used in the first
program, and a simple numeric variable like U will occupy 6
bytes. The total saving is now 3 bytes - not a fortune, but every
time that the literal "1" is used in the same program, it can be
altered to use variable U and save five bytes each time.

Another advantage of this method is that it does not slow
the program down in any noticeable way — try this benchmark to
see how much effect it has:-

20

Efficient Programming

BMLA 10 LET Y=0
20 FOR T=1 TO 1000
30 LET X=27
40 NEXT T
9999 STOP

BM1B replace line 30 with 30 LET X=Y

If you prefer not to try these benchmarks (and those that
follow), I have included a summary of the run times at the end of
the book.

Run the first program (BM1A) and time it - don't worry that
it takes a minute or two. When the message 9/9999 appears, stop
timing. Now run the second program — BM1B - alter line 30 as
instructed. Time it in exactly the same way. The difference in
the times is the time it takes to search for variable Y and
assign it to X as opposed to using the literal value held inside
line 30. Since the program loops 1000 times, the error is multi-
plied by 1000.

This will give you an idea of how little difference there is
between the two methods.

There is no need to assign a special variable for either 0
or 1, as these values can be obtained by using another variable
that already exists in the program.

Suppose your program has a variable D in use. The
expression:-

D=D will give the value 1 (a number must be equal to
itself, and a "true" expression has the value 1).

NOT D=D will give the value zero, since this is only the
reverse of the logic above.

Both of these occupy less memory than just writing the value
0 or 1 in a program statement, although they will be slightly

slower. If your program requires speed, then use literals. Try
these benchmarks to see what effect the expressions have:—

21

Efficient Programming

BM2A 10 LET ¥=20

20 FOR T=1 TO 1000

30 LET %=1

40 NEXT T

9999 STOP

BM2B replace line 30 with 30 LET X=Y=Y
BM3A replace line 30 with 30 LET X=0
BM3B replace line 30 with 30 LET X=NOT Y=Y

Time the programs as you did earlier and check the results
for parts A and B of each program benchmark. The results should
speak for themselves - the "B" version of each program occupies
less memory: what difference does it make to the run time?

Now you are in a position to choose the method that a
particular program needs - speed or memory.

The statement LET U=l requires 15 bytes and variable U also
uses six bytes. Each time that you now use variable U instead of
the literal "1", you are saving 6 bytes, so there is no point in
altering a program unless you can replace four literals, since
4*6 = 24 bytes saved, while you have added 21 bytes by writing
LET U=1.

You can see that each program needs to be carefully
considered - is it actually saving memory, or is it going to
increase?

You may like to study the "Dice Rolling" program — this has
been written with memory conservation in mind.

22

Efficient Programming

3.2 Avoiding numeric values

On many occasions, a program requires the use of numeric
values, but does not really need the glory of 5-byte floating
point! In the 1K RAM ZX81, these 5-byte variables can occupy a
large amount of space - especially when literals are held within
the program statements (see above).

A typical program which requires some preset values would
look like :=

10 DIM V(10)
20 LET V(1)=22
30 LET V(2)=9
40 LET V(3)=11
50 LET V(4)=17

'R

110 LET V(10)=3

From the previous section, you know that each of those
statements costs at least 24 bytes, a luxury that is hard to
afford. You could always enter these as direct commands, then
save the program with array V containing preset values, but
sometimes even this method is unattractive. A preferable solution
is to set these values into a string, then use the VAL function
to convert them. The numbers can be much shorter, as you only
need to hold (say) a two digit string for each value.

Look at this:-

10 DIM V(10)

20 LET V$="22091117036651042003" (31 bytes
30 FOR V=0 TO 9 (23 bytes
40 LET V(V+1)=VAL V$ (V¥2+1 TO V*2+2) (57 bytes
50 NEXT V (7 bytes

The overall saving here is approximately 100 bytes - enough
to hold quite a few more program statements.

You can see this type of routine used in the program "Ski
Run".

24

Efficient Programming

If the string is particularly long (in the example above,
the string in V$), you can release the space from variables by
declaring the variable as the empty string after the routine has
completed. Using the example above, this would mean adding one
extra program statement:-

60 LET vg=""

Again, each program has different needs and it is almost
impossible to make a general purpose subroutine that is also
extremely efficient. I have attempted to highlight the various
areas where you can avoid wasting memory and to show you a
possible way of resolving the problem. The actual program
statements that you enter in vyour programs may look very
different from those given above. If you wish to use a fairly
generalised routine, I have included one below.

You may be interested to see if using a string to hold a
numeric value is any faster or slower than using a numeric
literal. Try this comparison benchmark:-

BM4A 10 LET X$="99"
20 FOR T=1 TO 1000
30 LET X=1
40 NEXT T
9999 STOP

BM4B replace line 30 with 30 LET X=VAL XS

Notice that the time taken for program BM4A should
correspond (almost) to the time for programs BM1A, BM2A and BM3A.

24

Efficient Programming

3.3 String Data Storage

Some versions of Basic use the commands DATA and READ to
allow numbers and strings to be conveniently stored within a
program. Although it is not a problem to do without these
commands, there are times when it would be helpful to just store
a string of words or numbers in a program without going to the
expense of a string array.

If a set of words of varying lengths is to be stored, a
string array must always be set up to the length of the longest
item - this can waste a large amount of memory even though it is
quick to process, as only a subscript number is needed to give
the complete string.

Where speed is not particularly important, or space is
important, you may like to use this routine (or one similar) that
will pick out a single word or phrase from an ordinary string
variable.

The routine is used in the program "Tunnels and Trolls
Character Generator" which follows later on in the book.

If you wish to store numeric values, then you only need to

apply a VAL function to the string that is returned from this
subroutine.

The following variables are needed to work the routine:-

D$ which contains the string of words. Each word
should be separated by "/" characters. You
can change this by altering lines 9030 and
9050 below.

N which contains the word number which you want
to be extracted from D$.

Ws is set to the word requested, or the empty

string (i.e. length zero) if word number N
cannot be found in the string DS$. Apply a VAL

function to this variable if you wish for
numeric values to be held.

25

Efficient Programming

Tape name: "READS"

9000 REM PUT NTH WORD FROM D$ INTO WS
9005 LET XW=0

9010 LET wWs=""

9015 FOR X=1 TO N-1

9020 LET XW=XW+1

9025 IF XW>LEN D$ THEN RETURN

9030 IF D$ (XW)<>"/" THEN GOTO 9020
9035 NEXT X

9040 LET XW=XW+1

9045 IF XW>LEN D$ THEN RETURN

9050 IF D$(Xw)="/" THEN RETURN
9055 LET W$=W$+D$ (XW)

9060 GOTO 9040

You may well be thinking that this routine is not going to
save much memory space. Obviously, such a general routine would
be used where large quantities of items are to be stored - you
would probably omit the REM statements in any such routine as
well.

The total length of the routine above (including all the
special variables it uses, but not including the REM) is 222
bytes. This implies that a 16K RAM pack is really necessary to
gain full benefits of such a method - although there are still
500-odd left in a 1K ZX8l, so don't rule it out completely!

Remember that the string variable used can be assigned by a
direct command and then stored on cassette tape with the program.
This avoids holding a lengthy LET statement in the program.

.4 Program Structure

The ZX81 may seem quite fast to people who do not have any
real involvement with computers but, as good (and cheap) as it
is, it is also guite slow. When compared to not only larger
commercial business computers but also other personal computers,
the 2ZX81 appears slow. This can make interactive programs slow to
respond to any key being pressed.

In the discussions above, you have seen how a program can pe

Efficient Programming

made more efficient in terms of memory usage; now we turn to
speed.

First of all, consider frequently-used subroutines. In any
program, whenever a GOTO or GOSUB statement is obeyed, the ZX81
searches for the relevant line number by scanning the program
from the lowest line number.

If your program requires speed (and any small improvement
helps), then ensure that all the commonly-used subroutines are
kept at the beginning of the program (see the "Ski Run" program).
Your program layout would look something like:-

1 REM program name etc

10 GOTO 1000

20 REM frequent subroutines here
1000 REM main program

8999 STOP
9000 REM infrequent subroutines
(initialisation etc)

The following benchmark programs will give you some insight
into the way that various time savings can be made by writing
certain statements in different ways:-

BM5A 10 LET X=1
20 FOR T=1 TO 1000
30 IF X=1 THEN NEXT T

40 NEXT T
9999 STOP
BM5B replace line 30 with 30 IF X=0 THEN NEXT T
BM6A replace line 30 with 30 IF X THEN NEXT T
BM6B replace line 30 with 30 IF NOT X THEN NEXT T

27

Efficient Programming

The result of these tests shows that it is (slightly) more
efficient to ensure that a condition will normally fail (i.e. be
"false"). Obviously, if you need to introduce extra program
statements in order to make sure that a condition fails, then it
becomes slightly self-defeating. However, if you are in a
position to choose, then try to make sure that any conditions in
your programs are set up such that in the majority of cases, the
condition will result in a "false" evaluation.

The other conclusion that can be drawn from these last two
benchmarks is that it is more efficient, both in speed and memory
usage, to test a true or false value directly (as in BM6A and
BM6B) without using an expression such as X=1 or X=0. This can
only be used when the variable value is zero and non-zero (since
"true" is taken to be a non-zero value).

Study the results carefully - your programs can benefit
considerably from this type of information.

One other comparison for you — many programs use a variable
which increments by one each time around the main loop. This can

often be replaced by a FOR/NEXT loop, but is it worth it? Try
this:-

BM7A 10 LET T=1
20 IF T=1000 THEN STOP
30 LET T=T+l1
40 GOTO 20

BM7B 10 FOR T=1 TO 1000
20 NEXT T
9999 STOP

I'll let you see for yourself which method is better.

28

Efficient Programming

3.5 Expression Values

Expression values can be extremely useful in making a
program more compact. They may or may not speed it up, and they
can certainly make it hard to understand a program, but used with
care, complex expressions can reduce memory overheads quite
significantly.

You are probably aware by now that the ZX81 reduces all
conditional expressions to the values 0 (if the expression is
false) or 1 (if true).

A common use of this feature is when one variable is to be
assigned with a different value depending on the value of one or
more different variables. An example of this can be found in the
program "Etch-a-Sketch". The lines are reproduced below:-

110 LET DX=(D=5)*-1+(D=8)
120 LET DY=(D=6)*-1+(D=7)

Depending on the value of variable D, variables DX and DY
are set to one of four possible combinations:-—

Value of D Result in DX Result in DY
5 -1 0
6 0 -1
i Q0 +1
8 +1 0

This could have been written:-

110 LET DX=0
114 LET DY=0
118 IF D=5 THEN LET DX=-1
122 IF D=6 THEN LET Dy=-1
126 IF D=7 THEN LET Dy=1
128 IF D=8 THEN LET DX=1

...but it is guite easy to see that this solution occupies
considerably more memory (142 bytes, while the original lines

29

Efficient Programming

occupy 82 bytes!).

Since variable D can only have one value at any one time,
stating "(D=5)" can either be true (value 1) or false (value 0).
Multiplying this result by any other number, n, gives either n if
the expression was true, or zero if the expression was false.

This can be put to another memory-saving use. Suppose a
program wishes to test the variable:-

IF A$(1)="Y" THEN
If the program needs this expression more than once, it will
be less costly to write:-
LET A=(A$(1)="Y")
-..and then test variable A for being true or false:-
IF A THEN ...

It is hopefully obvious that variable A reflects the result
of the test at the time of assigning the variable. If A$ should
change, variable A will not necessarily give the correct result
unless the assignment is made again.

This can therefore be put into a complete subroutine. A
typical use of this type of routine can be seen when a "yes/no"
reply is entered into a program:-

8000 REM GET YES,/NO INPUT
8010 PRINT "ANSWER YES OR NO"
8020 INPUT Y$

8030 LET Y=CHR$ CODE AS="Y"
8040 RETURN

This particular routine is not very rigid in the checks made
on the information entered in line 8020, although you could alter
this as you wish. The point is that variable Y will now reflect
the answer YES or NO by simply stating:-

IF ¥ THEN PRINT "YOU ANSWERED YES" (or whatever)
or

IF NOT Y THEN PRINT "YOU TYPED NO"

Although this is quite an expensive subroutine to use if the
variable Y is only used once or twice in a program, it can

30

Efficient Programming

quickly save memory (and program speed - compare the results of
programs BM5 and BM6) if used several times, since the full

expression has already been evaluated.

Note for ZX80 users

With the original 4K ROM, the AND and OR operators used
boolean logic since all arithmetic was integer (2-byte). The same
"tricks" cannot, however, be used on the 8K ROM, as the AND and
OR operators now handle 5-byte arithmetic and give a value of 1
for "true" instead of -1. Notice also that -1 does not mean "all
bits set" any longer.

¥ Stocking Filler ***
Suitable for : 1K RAM

Try to stop the moving star by pressing one of the "number"
keys (1-9). The lower the score, the better. It is easy to stop
it by pressing "9", but you should try to keep the score low by
pressing "3" or "2". If you miss with one key, try another higher
valued key. This is not really suitable for the ZX80.

10 PRINT AT 10,0;"*"

20 FOR X=1 TO RND*50+25

30 NEXT X

40 FOR X=1 TO 10

50 PRINT AT 10, (X=1)*3;" ":AT 10,X*3;"*"
60 LET Z=CODE INKEYS

70 IF Z AND 2Z-28>=X AND 7-28<10 THEN GOTO 110
80 NEXT X

90 PRINT AT 14,10;"FAILED"

100 GOTO 120

110 PRINT AT 14,10;"SCORE:";%-28-X

120 PAUSE 4E4

130 IF INREY$<>"" THEN GOTO 130

140 CLS

150 RUN

31

Pro-Am Golf Putting

Suitable for : 16K RAM

You've managed to reach
the green, now it's time to
putt the ball. The hole is
represented by an inverse "O",
while the ball is shown as an
inverse "X". You need to enter
the direction and strength re-
quired to sink the ball.

This program uses the
"line plotting" routine given
in the ZX81 handbook, although
a couple of minor changes have
been made to allow the routine
to blank out a line as well as draw one.

Tape name: "PUTTING"

1 REM *** GOLF PUTTING ***
10 GOSUB 4000 (print instructions
20 CLS
30 REM DRAW BORDERS
40 FAST
50 GOSUB 2000

100 LET HOLEX=INT (RND*30)+1 (Place pin
110 LET HOLEY=INT (RND*18)+1

120 LET TEEX=INT (RND*30)+1 (Place tee
130 LET TEEY=INT (RND*18)+1

140 IF TEEX=HOLEX AND TEEY=HOLEY THEN GOTO 120

150 LET HITS=0

190 SLOW

200 PRINT AT HOLEY,HOLEX;"O" (use inverse "Q"
210 PRINT AT TEEY,TEEX;"X" (use inverse "X"
300 REM MAIN LOOP

310 GOSUB 3100 (clear line 21

320 PRINT "DIRECTION?"

32

330
340
350
360
370
380
390
400
410
420
500
510
520
530
540
550

560
570
580
590
600
610
620
630
640
700

710
720
730
740
750

800
810

820
830

840
850
860

Pro-Am Golf Putting

INPUT XD
GOSUB 3000

IF XD<O OR XD>12 THEN GOTO 300

PRINT TAB 22;XD

GOSUB 3000

PRINT "STRENGTH?"
INPUT XS

LET XS=INT XS

GOSUB 3000

PRINT TAB 28;XS

LET A=TEEX*2

LET B=INT ((TEEY*(-2))+42)
LET XD=(XD*(~1))+15
IF XD=12 THEN LET XD=0

LET C=A+INT (QOS ((PL/6)*XD)*XS)
LET D=B+INT (SIN ((PI/6)*XD)*XS)

LET XA=R

LET XB=

GOSUB 1500

LET P=1

GOSUB 1000

PRINT AT TEEY,TEEX;" ":

LET TEEY=INT ((D-42)/(-2)+0.5)

LET TEEX=INT ((C+0.5)/2)
LET HITS=HITS+1

(remove prompt
(check direction

(strength is integer
(clear prompt

(prepare to draw line
(calculate true direction

(destination

(L

(check new tee location
(set "plot" marker

(plot the line
(blank out old tee

(calculate new tee-off

IF TEEX=HOLEX AND TEEY=HOLEY THEN GOTO 800

LET A=XA

LET B=XB

LET P=0

GOSUB 1000

GOTO 200

GOSUB 3400

PRINT AT 20,0;"Y0OU DID IT"

PRINT "IT TOOK ";HITS;" PUTTS";

GOSuB 3500

IF INKEY$ ="" THEN GOTO 840

CLEAR
GOTO 20

(has ball reached hole?
{now "unplot" line

(set "unplot" marker
{(undraw the line

{(print "plop"
(winning messages

(print rating
(wait for another go

33

34

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1140
1150
1160
1165
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
2000
2010

LET
LET
LET
LET
LET
LET
LET
LET

U=C-A
V=D-B
D1X=SGN U
D1Y=SGN V
D2X=SGN U
D2Y=0
M=ABS U
N=ABS V

Pro-Am Golf Putting

(see Sinclair book

IF M>N THEN GOTO 1130

LET
LET
LET
LET

LET
FOR

D2X=0
D2Y=SGN V
M=ABS V
N=ABS U
S=INT (M/2)
I=0 TO M

IF P THEN PLOT A,B
IF NOT P THEN UNPLOT A,B

LET S=S+N

IF S<M THEN GOTO 1230

LET
LET
LET

5=5-M
A=A+DI1X
B=B+D1Y¥

NEXT I

LET
LET

A=A+D2X
B=B+D2Y

NEXT I
RETURN

REM CHECK NEW TEE LOCATION

LET ERROR=(C<2 OR C>62 OR D<6 OR D>42)

IF NOT ERROR THEN RETURN o

PRINT AT 21,0;"INTO THE ROUGH — PENALTY HIT"

LET HITS=HITS+1

IF C<2 THEN LET C=2
IF C>62 THEN LET C=62
IF D<6 THEN LET D=6
IF D>42 THEN LET D=42
RETURN

REM
LET

DRAW GREEN LIMITS

Y=43

2020
2030
2040
2050
2060
2070
2080
2090
2100
2110
2120
2130
2140
2200
2210
2220
2230
2240
3000
3010
3020
3030
3100
3110
3120
3130
3400
3410
3420
3430
3440
3500
3510
3520
3530
3540
3550
3590
3595

Pro~Am Golf Putting

GOSUB 2100

LET Y=4

GOSUB 2100

LET X=0

GOSUB 2200

LET X=63

GOSUB 2200

RETURN

REM DRAW "X" LINE

FOR X=0 TO 63

PLOT X,Y

NEXT X

RETURN

REM DRAW "Y" LINE

FOR Y=4 TO 43

PLOT X, Y

NEXT Y

RETURN

REM CLEAR PROMPTS

PRINT AT 20,0;" <-20 spaces-> "
PRINT AT 20,0;

RETURN

REM CLEAR LINE 20

PRINT AT 20,0;" <-63 spaces—> "
PRINT AT 20,0;

RETURN

REM PLOP

IF HOLEX<2 THEN LET HOLEX=2

IF HOLEX>29 THEN LET HOLEX=29

PRINT AT HOLEY ,HOLEX-2; "PLOP"

RETURN

REM SILLY MESSAGES

IF HITS=1 THEN PRINT " - HOLE IN ONE";
IF HITS=2 THEN PRINT " - NOT BAD...";
IF HITS<6 THEN GOTO 3590

IF HITS<8 THEN PRINT " - ONLY FAIR";
IF HITS>7 THEN PRINT " - DISGUSTING.";
PRINT T

RETURN

35

Pro-Am Golf Putting

4000 REM INSTRUCTIONS

4010 SLOW

4020 PRINT TAB 8;"GOLF PUTTING"

4030 PRINT ,,"DO YOU WANT INSTRUCTIONS?"

4040 RAND

4050 INPUT Y$

4060 IF CHR$ CODE Y$<>"Y" THEN RETURN

4100 PRINT ,," THE TEE IS SHOWN AS X AND THE",
"PIN AS O. YOU MUST JUDGE THE",
"DIRECTION AND STRENGTH NEEDED",
"TO SINK THE BALL."

4110 PRINT " THE DIRECTIONS ARE 1 TO 12 (AS",
"ON THE HANDS OF A CLOCK) BUT",
"YOU MAY USE FRACTIONS, LIKE 2.6",
NORILOJ LN

4120 PRINT " IT TAKES A STRENGTH OF 60 TO",
"HIT THE BALL FROM ONE SIDE TO",
"THE OTHER, AND 36 TO HIT FROM",
"TOP TO BOTTOM."

4130 PRINT " WHEN A GAME IS OVER, PRESS ANY",
"KEY TO START ANOTHER."

4140 PRINT ,,"HAVE FUN."

4150 PRINT ,,"(PRESS A KEY)"

4160 PAUSE 4E4

4170 POKE 16437,255

4180 RETURN

9900 SAVE "PUTTING"

9910 RUN

Here are the changes you'll need to run this program on
ZX80:-

605 PAUSE 150

840 PAUSE 4E4
841 POKE 16437,255

36

EYEBALL CHARACTERS

4.1 what it does

This routine allows you to print a string in large 8-by-8
format across the screen. It uses the PLOT command to draw the
letters, so you can fit eight characters across the screen. Since
the depth of the screen is only 44 pixels, you can have up to 5
lines (allowing you one blank "pixel line" in between).

It's an impressive way of introducing a program when it's
loaded - the name of the program can be made to appear in huge
characters on the screen!

4.2 How it works

The subroutine makes use of the 8K ROM contained in the ZX81
- a character generator is held at address 7680 onwards. If
you're not familiar with more detailed workings of a 480
microcomputer, then you may prefer to skip the next few para-
graphs since it's not really necessary to understand how the
routine works, although you may be interestea.

The character generator is a section of memory that contains
the pattern of each character that is output to the display. Each
displayed character occupies 8 bytes of memory, where each byte
corresponds to the pattern of one row of the character on the
screen. As an example, take the character "A". The address of the
generator pattern for "A" is 7984 (more on this below), and the
eight bytes starting at this address contain:-

37

Eyeball Characters

address contains gives on screen
decimal binary

7984 0 00000000 cesraans
7985 60 00111100 ae kR
7986 66 01000010 i
7987 66 01000010 P
7988 126 01111110 o FhEkkR,
7989 66 01000010 ol *,
7990 66 010000610 Haaal¥,
7991 0 00000000 cessaens

You can see the letter "A" taking shape in the last column.
Each character's pattern is found at the address:-

7680 + (character code * 8)

...but be warned that only characters with a code in the
range 0 to 63 are valid. All the other codes (greater than 63)
are either non-existent, or use multiples of these characters:
for example the keyword RND has a code 64, yet it is displayed by
the combination of the letters R, N and D.

4.3 The subroutine

So what about the subroutine? It uses the character
generator above to plot pixels on the screen. Since the generator
occupies an 8X8 grid, it's fairly easy to see how this can be
enlarged.

Cne problem to be overcome, though, is how to look at each
bit in the contents of the generator, since the routine needs to
plot a pixel when a bit is set, and skip over a pixel if a bit is
unset (as shown above by using * to represent a bit set, and
full-stop to indicate a bit unset).

I have used two versions of this routine - neither is parti-
cularly fast, but the second is at least noticeably faster than
the first. The first method is slightly easier to follow, though,
as it uses the more conventional approach to isolating a single
bit from a byte.

38

Eyeball Characters

The routine requires three variables to be set up before it
is called (further on you will see a full example of the routine
in use within a program) -

AS must contain a string of characters to be
displayed in large format. Maximum of eight
characters (else the 2X81 will stop with error
report B). The characters can only have codes in
the range 0 to 63.

XX the pixel position (across the screen) of the
first character in the string.

YY the pixel position (down the screen) of the first
character in the string. Note that 43 is the top
of the screen, while 0 is the bottom.

Version 1 - easy(?) to understand, but slower

9300 REM PLOT AS INTO BIG CHARACTERS

9305 FOR A=1 TO LEN AS$ (for each character

9310 LET XC=CODE AS (A) (get character code

9315 GOSUB 9340 (print in 8X%8 grid

9320 LET XX=XX+8 (next position on screen
9325 NEXT A (next letter

9330 RETURN {exit - all done

9340 FOR Y=YY TO YY-7 STEP -1 (eight rows down screen
9345 LET ROW=PEEK (7680+8*XC+YY¥-Y) (get row pattern from ROM
9350 LET SHR=128 (bit mask initial value
9355 FOR X=XX TO XX+7 (for each bit in row
9360 LET Z=INT {ROW/SHR) (put bit setting in Z
9365 LET ROW=ROW-Z*SHR (take this bit out

9370 LET SHR=SHR/2 (update mask for next bit
9375 IF Z THEN PLOT X,Y (plot if bit was set

9380 NEXT X (next bit pattern

9385 NEXT Y (next row

9390 RETURN (character complete

39

Eyeball Characters

Version 2 follows exactly the same principle, but since
calculations on the ZX81 are slow (5-byte floating point is a bit
like overkill on occasions when most programs can get by with
integers!), this method uses strings to hold as much as possible.
The bit mask is no longer held as a numeric variable, but by a
string whose codes represent the bit masks 128,64,32,16,8,4,2,1.

This also means that most of the tests can be made on
strings rather than numbers, although this doesn't actually speed
things up.

Version 2 - faster but trickier

9300 REM PLOT A$ INTO BIG CHARACTERS
9305 LET Zs=" " (see below
9310 FOR A=l TO LEN A$

9315 LET XC=CODE AS (A)

9320 GOSUB 9340

9325 LET XX=XX+8

9330 NEXT A

9335 RETURN

9340 FOR Y=YY TO YY-7 STEP -1

9345 LET X$=CHR$ (PEEK (7680+8*XC+YY-Y))
9350 FOR X=1 TO 8

9355 IF X$<Z$(X) THEN GOTO 9370

9360 PLOT XX+X-1,Y

9365 LET X$=CHR$ (CODE X$—CODE 2$ (X))
9370 NEXT X

9375 NEXT Y

9380 RETURN

40

Eyeball Characters

Line 9305 above sets up string Z$ to the bit mask string.
The characters needed are:-

128 inverse space GRAPHICS,/SPACE
64 RND FUNCTION/T
32 4 4
16 ((
8 grey square GRAPHICS/SHIFT/A
4 quarter sguare GRAPHICS/SHIFT/4
2 " " GRAPHICS/SHIFT/2
1 " " GRAPHICS/SHIFT/1

Although the string may look a bit odd, it is not used in a
conventional way, but rather lets us get over the problem of not
having any boolean operators or integer variables.

4.4 An example of use

So how do you use this? Here's an example of the routine in
use. It prints the message HELLO in jumbo letters in the centre
of the screen:

Tape name: "EYEBALL"

100 REM PRINT BIG HELLO

110 LET A$="HELLO" (message to print

120 LET XX=12 ("across" position
130 LET Y¥=26 ("down" position

140 GOSUB 5300 (invoke subroutine
150 STOP (see what you've done

Obviously, your program must incorporate one of the
subroutines above (preferably the second) in order to work.

41

Paint—-a-Pic
Suitable for : 1K RAM

Perhaps you had one of
these types of toys when you
were younger - I certainly did.
This version does not easily
draw "bends" (neither did the
toy), but gives you some inter-
esting patterns.

Use the cursor keys (with-
out SHIFT) to draw a line in
any direction. While you press
the key, the picture is drawn.
At any time, you may press the
"0" key (labelled RUBOUT) to
clear the screen. This leaves the marker at the same position, so
if you want to draw something starting from the bottom right-hand
corner, first draw a line to the starting position, then clear
the screen by pressing "0".

Line 30 is quite interesting. It looks at the system
variable RAMTOP to see if the 16K RAM pack is fitted. Without the
RAM pack, this is set to 68 (68*256=17408, which is the address
of the top of memory - 16384+1024). If any value greater than 68
is found, then extra memory must be fitted (either a 16K or 4K
RAM pack - the 4K RAM packs were only available in the early ZX80
days). If extra memory is available, then the whole screen can be
used for the picture, otherwise a restricted boundary must be set
up to avoid error 4 occurring.

Tape name: "ETCH"

10 LET MX=64 (set max screen size

20 LET MY=44 {(in X and Y directn

30 EE_PEEK 16389<69 THEN LET MY=23 (see if 16K fitted

40 LET X=NOT MX (starting point = 0.

50 LET Y=My-1 ["= MY
100 LET D=CODE INKEY$-28 (get keycode

42

Paint-a-Pic

110 LET DX=(D=5)*-1+(D=8) {calculate X directn
120 LET DY=(D=6)*-1+(D=7) {calculate Y directn
130 IF ROT D THEN CLS (check for clear

140 IF INT ((X+DX)/MX) OR INT ((Y+DY)/MY) THEN GOTO 200
(check if on screen

150 LET X=X+DX (update X position
160 LET Y=Y+DY (update Y position
170 T_IQI‘_ X, Y (draw new character
200 GOTO 100 (keep going...

If you have a 2X80 with the 8K ROM, you will need to add
three lines, since it is not possible to watch the screen while a
program is running.

Add :-
135 IF NOT DX AND NOT DY THEN GOTO 210 (no key pressed
210 PAUSE 4E4 (display screen
220 GOTO 100

Alter line 30 to read:-
30 IF PEEK 16389<69 THEN LET MY=22
This means that while you press a key, the screen will go

blank, but once you lift your finger, the screen will appear,
showing you your beautiful handiwork!

43

HINTS ‘N’ TIPS

As with most other people, I have gradually built up a
series of small useful (?) items that have nothing other than a
sense of beauty and simplicity about them. They are not really
useful programming aids, nor are they earth-shattering memory
savers — just simple ideas that can make programming more pleasu-
rable, especially on the ZX81.

5.1 Pause Forever

The first item is one I find particularly neat, and you will
probably notice it used throughout the programs in the book.

According to the Sinclair book, when the PAUSE command is
used with a value greater than 32767, it is treated as "pause
forever". The only way to restart a program in such a state is by
pressing a key.

This is extremely useful, particularly for the %X80 users
who have bought the 8K ROM expansion, since the ZX80 cannot
display the screen while a program is running, so the INKEYS
function cannot be used to its full potential. This is not
relevant to the ZX81 unless running in fast mode.

A program would therefore contain a statement such as :-

200 PAUSE 33000

As an aide-de-memoire (pardon my Greek), 1 use the
expression:—

200 PAUSE 4E4

...for two reasons. Not only does it occupy slightly less
memory, but it also sounds like "pause forever" if you pronounce

44

Hints 'n' Tips

it as "pause for-ee-for".

Remember that scientific notation is quite legitimate on the
ZX81 and that 4E4 actually represents 40000, which is greater
than 32767.

5.2 Ending a Program

This is another hobby-horse of mine - I like to see a
program which finishes with a recognisable completion message,
rather than something like 0/375 at the foot of the screen.

For this reason, I include the line:-

9999 STOP

...at the end of a program, and whenever the program
terminates, all I need to write is...

... GOTO 9999

When the program reaches this line, it displays 9/9999 at
the foot of the screen, which is always instantly recognisable as
"completed O.K.". Any other error reports stand out quite easily
when you are watching for 9/9999.

Obviously, many interactive programs are only stopped by
pressing the BREAK key, but this tends to give an error D which
you should be expecting.

5.3 REM statements
Having been involved in programming for more years than I
care to put in print, I have met many different programs along
the path.
One of the worst problems of taking on another person's

programs is that of understanding the structure of them. This can
make you waste large amounts of time trying to "unpick" a complex
portion of programming.

I suspect that the vast majority of programs you write will
be thrown away or replaced by newer and better versions. This

45

Hints 'n' Tips

type of program, which invariably serves to test an idea out, is
not worth spending any amount of time on, but when you write a
program that you intend to keep, sell or give to friends, it
becomes (I feel) extremely important to spend some time
considering the way you have made it easy for other people to
follow.

The REM statement allows you to annotate various portions of
a program so that it can be easily understood. You should try to
use a REM statement:-

a) at the beginning of every subroutine, stating the
purpose of the subroutine,

b} at each logical "section" of the program, such as the
main loop, the initialisation section, the finishing
section, etc.,

c} before any particularly complex passages of program,
briefly outlining the intention of the routine.

Here comes the rub. On the 1K ZX81, there is not really
enough memory to allow this luxury, and most of the programs need
to use rather devious programming to f£it in. I have tried to
avoid this problem by putting comments alongside the program
statements throughout the book, but if your program has room for
a REM, try to put one in.

When the 16K RAM pack is fitted, space becomes much less
important in programming considerations. You can afford to be
rather extravagant with the REM command - after all, it only
takes you a few seconds to type them and they have no effect on
the way a program runs. '

(Note that in most of the programs in this book, I have kept
the REM statements to a minimum. This is because not only have I

put comments alongside each program, but I also want to keep the
amount of typing you have to do down to a reasonable minimum.)

46

Hints 'n' Tips

5.4 Cassette Tapes

In case you are not aware, you can buy Cl12 tapes from most
computer stores (also mail order). These tapes are much more
convenient to use than the traditional C60 or C90 tapes.

It can become extremely irritating to sit and wait for the
cassette to be wound from one end to the other, thus the shorter
the tape, the less time you sit and wait.

You may be tempted to put all your programs onto one tape.
Try to resist this temptation - three or four programs per side
is really quite sufficient, otherwise you'll be waiting for a
significant amount of time if the program you wish to load is the
last one on the side.

It looks much more impressive to see a well-catalogued set
of tapes than to watch someone fumbling around with one tape,
making constant excuses such as "This won't take a minute" or
"Nearly there!”.

The original ZX80 did not allow a program to be saved or
loaded by name, making it very awkward to combine several
programs onto one tape. For this reason, ZX80 owners were advised
to keep each program on a separate side of tape. Those who have
bought the 8K ROM expansion also have the "named program"
facility and will be able to "batch" their programs onto one tape
with more confidence.

5.5 Saving Variables

If you decide to save a program with some preset variables,
then include a "load-and-go" routine in the program so that it
automatically runs when it is loaded from tape. This way, you
will avoid typing RUN by mistake and clearing all the variables
that you've so carefully preserved.

An example of a "load-and-go" routine can be found on page
110 of the Sinclair book. You will also find one in the "Adven-
ture Loader" program in this book.

47

Hints 'n' Tips

5.6 Loading Programs

In the early ZX80 days, a large amount of adverse comment
was bandied about regarding the problems of loading programs.
Some people found it extremely erratic, while others experienced
no problems at all.

As always, provided you are careful to ensure that you abide
by the rules (see Chapter 16 of Sinclair's book), you should find
that once you have got it working, it will stay that way.

One item is missing from the list, and in producing cassette
tapes of the programs contained in this book, we have found that
using stereo recording equipment can (but not always) cause
trouble.

If the heads are misaligned on a stereo recorder, then phase
shift can occur between the two channels when played back on
either a different recorder or even your own if the alignment is
very bad. You will not hear anything wrong, as your ears will not
detect a slight phase shift, but your ZX81 will certainly
register a problem!

The solution is simple - if you are using stereo eguipment,
record in one channel only (preferably the left channel, since it
is the outside channel and therefore reduces crosstalk). ¥You may
well find that it becomes easier to read your tapes on a cheap
portable recorder.

5.7 Looking at strings

The ZX81 BASIC is fairly complete, but does suffer from one
or two minor drawbacks. One of these is the irritating habit of
error report 3 occurring when a program tries to look at a
"slice" of a string, e.g.:

LET AS="ABCDE"
PRINT AS (6)

...will give error 3 since there are only five characters in

AS. Personally, I would have preferred to see an empty string
given, but I mustn't grumble too much!

1f your program only needs to look at the first character of

48

Hints 'n' Tips

a string, then error 3 can be avoided by writing:-
CHRS CODE AS

-..Since the CODE function supplies the code value of the
first character, or zero if the string is empty. This way, the
program does not need to include a line such as:—

IF LEN X$=0 THEN

So if you are looking at individual characters of a string,
you can write:-

CHRS QODE X$(n TO)

...which will never give error 3 while n>=1.
5.8 Saving memory

You may have caught onto this hint while reading the section
"Efficient Programming", but it's still worth making it more
explicit.

At any time, you can rewrite a statement such as:-
IF xxxx <> 0 THEN
...by stating instead...
IF xxxx THEN
...since a non-zero value is taken by the zX81 to mean
"true".

By the same logic, a statement such as:-
IF xxxx = 0 THEN

....Can be written as...
IF NOT xxxx THEN

Both of these alternative methods are not only faster to
run, but they occupy less memory.

It is important to be aware that you are not out to win a
prize for writing the most devious piece of pregramming, but that

49

Hints 'n' Tips

you are attempting to make the most of the %ZX81's features, A
different computer system may not be so happy to understand a
statement like those above, so you should be wary of assuming
that your programs will now run on any computer system.

5.9 Inputting Expressions

It is very easy to overlook a quite powerful feature of the
7z¥X81 - the fact that any valid expression (of the type requested)
can be entered when an INPUT command is being executed.

This is put to good use in the program "Standard Deviation",
where a list of data points is entered and terminated by typing
END. Yet the program is expecting a numeric value?!

Since the variable END has already been assigned within the
program (it is given the walue 1E38, a wvalue unlikely to be
entered in the normal course of data entry), it is accepted by
the INPUT statement as a legitimate numeric value.

You could also enter a value such as 25*3.555/6 — the z2X81
is just as happy.

The same applies to string input as well - any previously
assigned string variables can legally be entered when an INPUT
statement asks for some data. In this case, however, you need to
rub out the quotes that the ZX81 puts on the bottom line when
string input is expected. The easiest way of doing this is to
press EDIT (SHIFT/1l), which always deletes any input data being
typed.

5.10 Using the 16K RAM Pack

Most of the programs in this book were created and tested
initially with the 16K RAM pack fitted, then made suitable for
the 1K ZXB1l.

Unfortunately, a program that is created when the RAM pack
is fitted and subsequently SAVEd, cannot be re-loaded into the 1K
7ZX81 without some effort. This is because the display file is set
to 24 lines of blank lines once the ZX81 realises that more than
3.75K of memory is available, which is too large to fit into the
basic 1K ZX81.

If you want to run a program later on the basic unit, then

Hints 'n' Tips

before you save the program, enter the following direct
commands : -

POKE 16388,0
POKE 16389,68
CLS

The first two commands set the RAMTOP system variable back
to the decimal equivalent 17408, while the CLS command ensures
that the display file is contracted to a minimum size.

Obviously, your program must be capable of fitting into the
1K ZX81 or this will all be in vain.

5.11 Arithmetic Accuracy

In common with other computers, the ZX81 is incapable of
holding all numbers accurately.

Humans use arithmetic to the base 10, arising from the fact
that we can count items easily on fingers. However certain values
can never be exactly represented by a decimal number, for example
PI or SQR(2) - these are called irrational numbers.

The computer suffers the same problem, although the numbers
that it cannot accurately represent are slightly different, since
it uses arithmetic to the base 2.

This leads to some interesting, but sometimes disturbing,
errors in calculations as the results (typically of division) can
leave fractional components which are inaccurate. The PRINT
command rounds out these small errors, but a few can still creep
through into some of your calculations.

Try this:-

LET v=100*0.15
PRINT V,INT V

You will expect V to contain the value 15 - which it does -
and INT V to also give 15, since the INT function rounds down to

an integer value. But in this case, INT V gives 14.
You would probably expect to see the error by then writing:-

Bl

Hints 'n' Tips

PRINT V-INT V

...but to no avail, as the PRINT command removes these
errors and prints the value 1.

In this particular case, the problem can be solved quite
easily by writing instead:-

LET V=100%15/100

...which forces greater accuracy on the division since it is
then dealing with larger values.

If you intend to write financial programs, statistical or
mathematical programs, this can cause you a few headaches. Each
occurrence of these rounding errors needs to be treated individ-
ually, making it hard to give you a general solution here.

One piece of advice, however, 1is to ensure that
all multiplication is performed before division wherever
possible, hopefully ensuring that the division will give a more
accurate result. This is a method that you sometimes need to
adopt on a calculator in order to avoid losing accuracy - the
zX81 is not really that much different in this respect.

% Gtocking Filler *#
Definitely suitable for : 1K RAM

Yet another page-filling program. This one just draws a
pretty pattern.

10 FOR X=0 TO 9999
20 SCROLL

30 LET Z=SIN (X*PI/10)*15

40 PRINT AT 21,16-Z;"*";AT 21,16+%;"*"
50 NEXT X

52

Digital Clock

Suitable for : 1K RAM

This program avoids the
pitfalls that are found in the
clock program in the Sinclair
ZX81 book. The main problem
with that particular program is
that it cannot be "tuned" accu-
rately, since the PAUSE 42
statement can only ever be
altered by units of 1/50th of a
second. Although dummy state-
ments can be included in the
program in an attempt to add a
small time difference, it will
never be exactly a multiple of 1/50th second, therefore the clock
will never run very true.

After all that, you're probably expecting an atomic clock!
Well, not quite, but certainly this version is more accurate than
the Sinclair clock. The disadvantage is that the clock must run
in SLOW mode - those ZX80 8K ROM users will not be able to use
this clock (sorry). Do not despair, though, as the technique
involved can be put to good use in other programs which do not
rely on a constant display.

The method revolves around the use of system variable
FRAMES, which is decremented for each frame sent to the
television - 50 times per second. When the ZX81 is running in
slow mode, the screen is constantly refreshed, therefore the
FRAMES field is always "ticking" fifty times per second.

Since this "ticking" speed is really too fast to monitor in
a BASIC program, I have used the most significant half of the
FRAMES field (address 16437), which alters every time 256 frames
have been sent to the screen. As 50 frames are sent per second,
this corresponds to 256 * 0.02 seconds, or 5.12 seconds.

So here we have a "built-in" clock. If a program monitors
the contents of address 16437, then whenever its value alters,

53

Digital Clock

5.12 seconds have passed. It does not make any difference that
the program takes one or two seconds to process any other work,
since in slow mode, the clock is always "ticking". As long as
your program takes less than 5.12 seconds to keep checking the
clock, it will keep accurate time.

This Digital Clock program uses the ideas above to
constantly display the time. It does not display the "seconds"
field each second, as the internal "clock" only ticks every 5.12
seconds, so instead, it shows the time accurate to the nearest
second every 5.12 seconds. Occasionally, you will notice the time
jump by six seconds rather than five. This is when the odd 0.12
seconds eventually build up to become significant (i.e. after 9
"tiCkS") "

Now you can see how tuning this clock becomes accurate.
Since the program is no longer dependent upon the PAUSE command,
any value can be added in whenever a "tick" is detected. Although
the true value of a tick should be 5.12 seconds, you will find
that the clock probably doesn't quite run at the right speed. Now
you can alter the amount added (line 5 below) by any small amount
that you wish.

Run the clock for one hour (as exactly as possible), then
calculate the number of ticks that occurred during that period.
You may prefer to modify the program to do this for you. Then
calculate the length that each tick should take (3600/n) and
enter this value into line 5 below. On my own ZX81, I use a tick
length of 5 seconds.

The program "16K Fruit Machine" gives a good example of a
program which uses the clock for timing the length of a game.

Note that this program occupies almost all of the memory on
a 1K zZX81.

Tape name: "CLOCK"

1 REM DIGITAL CLOCK

5 LET TICK LENGTH=5.12 (see text above

10 PRINT "ENTER TIME (HHMM)" (get starting time
20 INPUT T$

30 LET H=VAL T$(1 TO 2) (take out hours

40 LET M=VAL T$(3 TO 4) (...and minutes

54

Digital Clock

50 LET S=(-TICK LENGTH) (first time through
60 LET T1=-1 {("tick" monitor
70 POKE 16436,255 (start clock ticking
80 CLS
90 PRINT AT 10,10; "™**#xkxkkkkxt
AT 12,10;"*&*kkkkkkksn (pretty display
100 LET T2=PEEK 16437 (monitor FRAMES
110 LET TICK=(T1<>T2) (see if tick occurred
120 IF TICK THEN GOSUB 1000 (yes?
130 LET T1=T2 (update tick monitor
140 GOTO 100 (keep trying
1000 LET S=S+TICK LENGTH (increment time
1010 IF S<60 THEN GOTO 1100 (has a minute passed?
1020 LET M=M+1 (update minutes
1030 LET S=5-60 (reset seconds
1040 IF M<60 THEN GOTO 1100 (has an hour passed?
1050 LET H=H+1 (update hours
1060 LET M=M-60 (reset minutes
1070 IF H>23 THEN LET H=0 (has a day passed?
1100 PRINT AT 11,12;H;":";M;":";INT S;" " (print clock

1110 RETURN

Artist
Suitable for : 1K RAM

This tiny program turns you
into Picasso! Well, perhaps that's a
bit too strong a comparison, but it
does allow you to draw pictures on
the screen.

The program asks for a series
of "brush strokes", and each is a
five-character string. The first two
represent the line number, the next
two are the column number, and the
last character is the character to
be "painted" at that position on the

screen. As an example, suppose you want to draw the character "*"
at line 18, column 5. You would enter "1805*" when asked.

Obviously, if you make a mistake, you can correct it by

drawing a "space" at the same position.

Tape name: "ARTIST"

10 INPUT C$
20 IF LEN C$<>5 THEN GOTO 10

{get "brush stroke"
(check it's O.K.

30 PRINT AT VAL C$(1 TO 2),VAL C$(3 TO 4):C$(5);

40 GCTO 10

("paint" it
(keep going...

Here's an example of a few "brush strokes" to give you the
idea (the :: chnaracters are obtained by GRAPHICS/SHIFT/A) :-—

0520/ 1314~
09211 1315-
1019/ 1316~
10211 1317=
1114- 1318-
1115- 1319-
1116~ 1320-

56

1224::
1225::
1226::
1227
1228::
1229::
T 2302

Artist

1117~ 1321- 11211
1118- 1311- 12211
1213/ 1312-

1214. 1222::

1313- 1223::

Those of you with the 16K RAM pack may like to try this
alternative program. It additionally lets you save your pictures
on tape so that they can be re-drawn whenever you fancy!

Run the program in the usual way, entering "brush strokes"
as in the smaller version (the example picture above will work
just as well with this version). When you are happy with your
picture, enter "SAVE" instead. The program will ask you for the
picture name and will then save the program on tape under this
name (make sure the cassette is running before you enter the
name!l) .

When you load the program again, it will automatically draw
your picture for you.

At any time, you may enter "QUIT" to stop the program.

Tape name: "ARTIST16"

1 REM 16K ARTIST
2 REM *%%kkkkkskk

10 DIM P$(22,32) (copy of picture
20 REM DRAW PICTURE

30 CLS

40 FOR Y=1 TO 22

50 PRINT P$(Y);

60 NEXT Y

100 REM GET BRUSH STROKES

110 INPUT C$

120 IF C$="SAVE" THEN GOTO 1000

130 IF C$="QUIT" THEN GOTO 9999

140 IF LEN C$<>5 THEN GOTO 100 (check legality
150 LET Y=VAL C$(1 10 2) (line number

160 LET X=VAL C$(3 TO 4) (column number

170 IF INT (Y/22)<>0 OR INF (X/44)<>0 THEN GOTO 100

180 PRINT AT Y,X;C$(5); ("paint" character

57

Artist

190 LET P$(Y+1,X+1)=C$(5) {also store in array
200 GOTO 100 {(keep going

1000 REM SAVE PICTURE

1010 PRINT AT 21,0;"PICTURE NAME?"

1020 INPUT N$

1030 IF LEN N$=0 THEN GOIO 1000 (don't want error F
1040 SAVE N$

1050 GOTO 20 (draw the picture again
9999 STOP

% Stocking Filler ***
Suitable for : 1K RAM

The 7X81 thinks of a number between 1 and %9 and vyou have to
guess it before the ZX81 gets bored giving you clues.

10 LET N=INT (RND*99)+1
20 SCROLL
30 PRINT "I AM THINKING OF A NUMBER..."
40 FOR G=1 TO 5+INT (RND*3)
50 SCROLL
60 PRINT "ENTER GUESS NO. ";G;": ";
70 INPUT Y
80 PRINT Y
90 IF Y=N THEN GOTO 200
100 SCROLL
110 PRINT "MOPE - TOO ";
120 TIF Y>N THEN PRINT “HIGH."
130 IF Y<N THEN PRINT "LOW."
140 NEXT G
150 SCROLL
160 PRINT "FAILED. THE NUMBER WAS ";N
170 GOTO 9999
200 SCROLL
210 PRINT "CORRECT. PRETTY GOOD..."
9999 STOP

58

DECIMAL JUSTIFICATION

One problem with floating-point arithmetic is that of print
formatting. Since the ZX81 always gives an unformatted string
when a numeric variable is printed, it is difficult to display a
screen of results where the numbers are all in neat columns.

6.1 Justifying money values

The problem mentioned above is particularly apparent when a
program is using calculations involving money - two decimal
places are required even when these are zero. For instance, a VAT
calculation program may want to display the results as:-

AMOUNT VAT RATE VAT

100.00 15.00 15.00
1.00 15.00 0.15
25.60 15.00 3.84

e s e = aeae *eea

"es e s ana e

If the program were to print these results without any
formatting, they would be left justified - that means they would
all line up on the left-hand side:-

AMOUNT VAT RATE VAT
100 15 15
i 15 0.15
26.6 4% 3.84

59

Decimal Justification

This subroutine converts numbers into a fixed format and
prints them at a specified column number, making it much easier
to read a screen of printed results. If you're using a printer,
then these results will look so much smarter.

All results are rounded to two decimal places, so a value of
3,245 will be printed as 3.25. Be careful, though, since you may
find that fractional components in your numbers make any totals
appear incorrect by one penny from time to time. Try to keep
values to two decimal places all the time.

Two variables are required to drive this routine:-—
v which contains the value to be printed
[which contains the display column number at which

the right-hand side is to be aligned.

9500 REM JUSTIFY V TO C (2 DEC PLACES) (Tape name: "JUST2"

9510 LET XL=INT (ABS V+.005)*SGN V (get pounds rounded
9520 LET XP=INT ((ABS (V-XL)*100)+0.5) (get pence rounded
9530 LET ZS$=STRS$ XP (convert pence

9540 LET Z$=STR$ XL +"."+("0"+Z%) (LEN Z$ TO)

(force in zeros
9550 PRINT TAB (C-LEN 2Z$+1);Z$; {print at col C
9560 RETURN {all done

A small example of this in use:-

100 REM VAT CALCULATOR (tape name: "YATCALC"
110 PRINT "ENTER AMOUNT £££.PP"

120 INPUT V

130 LET S=V (save amount for later
140 LET C=18 (print at column 18

150 GOSUB 9500 (justify Vv and print it
160 PRINT (new line

170 LET v=V*15/100 (calculate VAT

180 GOSUB 9500 (justify & print

190 PRINT (new line

200 PRINT TAB 13;"--———— " (separator to loock nice

60

Decimal Justification

210 LET v=V+S (value + VAT

220 GOSUB 9500 (print justified total
230 PAUSE 4E4

240 CLS

250 RUN

Add 235 POKE 16437,255 if you have a ZX80.

.2 Variable Justification

This is really an extension of the previous routine, but it
allows you (additionally) to specify the number of decimal places
that are required in the printed output.

As well as variables V and C, you must set variable N to the
number of decimal places required in the display.

In this subroutine, rounding is not automatic as there are
many cases where the ZX81 will not give accurate results of
division (see "Hints 'n' Tips"). You should ensure that variable
V is rounded to the required degree of accuracy prior to calling
the subroutine.

Tape name: "JUSTN"

9500 REM JUSTIFY V TO C WITH N PLACES

9510 LET 2$=""

9515 FOR z=1 TO N

9520 LET 7$=2$+"0"

9525 NEXT 2

9530 LET XL=INT ABS V*SGN V

9535 LET XP=INT (ABS (V-XL)*10%*N)

9540 LET Z$=STR$ XL+"."+(2$(1 TO N-LEN STR$ XP)+
(STR$ XP+Z$)) (1 TO N)

9545 PRINT TAB (C-LEN Z$+1);2$;

9550 RETURN

This routine could be used in the VAT calculation given
earlier with only one alteration to the original program. A new
line number should be added to set the number of decimal places
to 2:-

61

Decimal Justification

105 LET N=2
Obviously, this routine is slightly slower than the
previous, as it involves the ** operation to give the decimal
fractions, but it does give much greater flexibility. If you only
need two places of decimals, then stick to the first version,
otherwise make use of this one. Variable N can be set once and
left alone, or can be altered to different values throughout the

program as necessary.

6.3 Print "Using" Routine

Although the ZX81 BASIC conforms quite well to the Microsoft
Basic that has become a fairly-well adopted standard on
microcomputers, there are several areas where it does not offer
the full features of this Basic.

One such area is the PRINT command, which gives no real
formatting power. This routine is an extension of the previous,
in that it gives even more flexible numeric formatting power.

Assign string variable U$ to contain a mask of the number as
required on printing, e.g. :-

LET U$="9999.99"

...will force the number contained in variable V to be
printed with two decimal places, and a maximum of four leading
digits. The digit "9" represents a position for the resulting
number to be placed while the full-stop indicates the relative
position of the decimal point. Obviously, since the ZX81 Basic
caters for a maximum of nine-and-a-half significant digits, there
is no real point in using a mask with more than nine (or possibly
ten) mask characters.

This routine will also cater for a mask which does not
contain any decimal places, thus making it general purpose for
any numeric values (within the constraints of 9.5 digits - beyond
this point the ZX8l gives exponential notation, causing the
routine one or two headaches!).

If the resulting field requires more printing characters
than your mask specifies, then the left-hand characters (i.e.
the most significant) are truncated.

62

Decimal Justification

As with the previous routine, rounding is not performed, so
variable V should be set to the required accuracy before entry.

Variable U$ can either be assigned once at the start of a
program and retained throughout, or altered to various values as
required during a program.

The three variables required are:-

v the value to be printed
G the print column of the right-hand edge
us the print mask required (see above)

Tape name: "JUSTU"

9500
9505
9510
9515
9520
9525
9530
5535
9540
9545
9550
9555
9560
9565

9570

9575
9580

REM PRINT USING US

LET zg="" (initial "zero" mask

LET XL=0 (decimal point not found
FOR 2z=1 TO LEN U$ (now search for dec point
IF XL THEN LET ZS$=z5+"(Q" (if found, update "zeros"
IF U$(2)<>"." THEN GOIO 9535 (see if mask has a "."
LET XL=NOT XL (set dec. point found
NEXT 2

LET XL=INT ABS V*SGN V (as before

LET XP=INT (ABS (XL-V)*10**LEN 7$)

IF LEN Z$ THEN GOTO 9565 (check if no dec. places
LET Z$=STRS XL (just print integer

GOTO 9570

LET Z$=STR$ XL+"."+(Z$(1 TO LEN Z$-LEN STR$ XP)+
STR$ XP+Z$) (1 TO LEN 7$)
IF LEN Z$>LEN U$ THEN LET Z$=7$(LEN Z$-LEN US+l 10)
(truncate Z$ if necessary
PRINT TAB (C-LEN Z341):73;
RETURN

63

Standard Deviation

Suitable for : 1K RAM

This small program allows you
to calculate the standard dev-
iation of a number of data
points. Terminate the list by
typing END when asked for a
value. You are told which value
to enter next so that you can
keep track of where you have
reached.

The use of entering a
numeric expression in reply to
a request for input data is
covered in the section "Hints 'n' Tips".

Tape name: "STDDEV"

1 REM STANDARD DEVIATION

10 LET POINTS=0 (initial values

20 LET SQUARES=0

30 LET SUM=0

40 LET END=1E38 (this can be altered
100 CLS (main program loop
110 PRINT "ENTER DATA POINT ";POINTS+1 (ask for data

120 INPUT VALUE (input it

130 IF VALUE=END THEN GOI1O 200 (is it the end?

140 LET POINTS=POINTS+1 (update no. entered
150 LET SUM=SUM+VALUE (update total so far
160 LET SQUARES=SCUARES+VALUE**2 {sum of sqguares

170 GOTO 100 (next data point

200 CLS (print results

210 PRINT "STANDARD DEVIATION 1S ";
220 PRINT SQR (SQUARES/POINTS—(SUM/POINTS) **2)
9999 STOP

64

Jaws
Suitable for : 16K RAM

Time for an all-action
game! You control the shark
which is terrorising four inno-
cent swimmers - try to get them
all in the minimum number of
moves.,

You can move the shark by
pressing the 5,6,7 and 8 keys
(don't use SHIFT), which will
move the shark in the appro-
priate direction of the arrows.
Once you have altered course,
you do not need to keep press-
ing the key.

The four swimmers begin at random positions on the screen
and each moves in a different direction. Their swimming speed is
only one quarter of yours. As they reach the edge of the screen,
they will "wrap round" and re-appear on the opposite side.

Tape name: "JAWS"

1 REM JAWS
2 REM *%*#%%

10 DIM S(6,2)

20 FOR X=1 TO 4

30 LET S(X,1)=INT (RND*64)
40 LET S(X,2)=INT (RND*44)
50 NEXT X

60 LET S(5,1)=30

70 LET S(5,2)=24

80 LET YD=4

96 LET T=0

100 LET N=1

110 PRINT AT 10,14;"JAWS"

200 REM MAIN LOOP

(1-4 swimmers, 5-6 you
(place swimmers in sea
(random row

[column
{place shark
(initial shark direction

(number of turns
(next swimmer to move

65

210
220

230

240

250
260

300
310
320
330
340
500
510
520
530
540
550
560
565
570
580
590
600
610
620
630
900
910
920
930
1000
1010
1020
1030
1100
1110
1120

66

Jaws

LET X=1 (set "all eaten" marker
FOR ¥=1 TO 4 (check each swimmer
IF S(Y,1)<>5(5,1) OR S(¥,2)<>S5(5,2) THEN GOTO 300

(see if shark at swimmer
PRINT AT 21-INT (S(Y,2)/2),INT (S(Y,1)/2);"MUNCH"
(oh dear...

PAUSE 100

LET S(¥,1)=-1 (mack swimmer as "eaten"
IF S(Y,1)<>-1 THEN LET X=0 (see if any left alive
NEXT Y

IF NOT ¥ THEN GOTO 500 (carry on if any left
PRINT AT 20,0;"YOU TOOK ";T;" TURNS"

GOTO 9999

LET D=CODE INKEY$ -32 (get change of direction
IF D>0 AND D<5 THEN LET ¥YD=D (check it's wvalid

LET D=YD = (move shark

GOSUB 1000 (calculate shark directn.
UNPLOT S(6,1),5(6,2) (remove shark's tail

LET 5(6,1)=5(5,1) (keep track of shark tail
LET S(6,2)=5S(5,2)

LET S=5 {shark subscript

GOSUB 1100 (draw new head

LET S=N (check next swimmer

IF S(S,1)=-1 THEN GOTO 900 (is he dead?

LET D=N (move swimmer

GOSUB 1000 (check his direction
UNPLOT 5(S,1),5(5,2) (remove old position
GOSUB 1100 (draw new position

LET T=T+1 (update no. of turns

EEE N=N+1 (update swimmer number

IF N>4 THEN LET N=1 {only 4 of them

GOTO 200 (keep going...

REM CALCULATE DIRECTION

LET DX=((D=1)*-1)+(D=4) (DX holds single position
LET DY=((D=2)*=1)+(D=3) (DY " " !
RETURN

REM MOVE OBJECT

LET S(S,1)=S(S,1)+DX (move object one position
LET S(S,2)=5(S,2)+DY (" " " B

Jaws

1130 LET S(S,1)=S(S,1)-INT (S(S,1)/64)*64 (check "wrap round"
1140 LET 5(S,2)=5(S,2)-INT (S(S,2)/44)*44 (" " d
1150 PLOT S(S,1),5(S,2) (draw new position

1160 RETURN

If you are using a 2ZX80, add the following two lines:-

505 PAUSE 25
506 POKE 16437,255

%* Stocking Filler *
Definitely suitable for : 1K RAM

A small program to fill up the remainder of a blank page.
You'll find some interesting patterns formed at times. Apologies
Lo 2X80 users, but this is strictly for slow mode. You can alter
it if you wish, but I think you may find the screen jumping too
offputting.

10 LET P=0

20 LET X=INT (RND*32)+16

30 LET Y=INT (RND*22)+11

40 IF P THEN PLOT X,Y

50 IF NOT P THEN UNPLOT X,Y
60 LET P=NOT P

70 GOTC 20

67

USING MACHINE CODE

Don't expect me to teach you how! This section shows you
ways of entering machine code routines into the ZX81. There are

three methods which are all fairly straightforward to use,
although each has various advantages and disadvantages. The
method you choose will largely depend on the amount of machine
code you wish to enter and the way in which it is written.
7.1 Using a REM statement

This method is probably the easiest way of entering a

routine that can also be saved with the program on tape.
Your program should include a REM statement as the first

line in the program. It should also contain a number of "dummy"
characters which will be replaced by your routine.

The first program statement will begin at address 16509 and
the address of the first dummy character on this REM statement
will be 16514 (there are two bytes for the line number, two for
the length of the line and one for the REM token). You can check
this by typing :-

NEW
10 REM ABCDEF
PRINT CHRS (PEEK 16514)

...which will print "A".

Your program can now POKE machine coded subroutines into
this address, overwriting the dummy characters one-by-one.

When you list the program afterwards, the REM statement will
look totally weird, as the 2ZX81 tries to convert all the special

codes back into keywords. Don't worry though, as it is only being

68

Using Machine Code

printed wrongly by the ZX81's listing routine. Here's an
example:-

1 REM AAAAA

10 LET X=16514
20 POKE X,237
30 POKE X+1,75
40 POKE X+2,7
50 POKE X+3,64
60 POKE X+4,201
100 PRINT USR X

This small program creates a machine code routine which
gives the current line number being executed. Whenever USR X is
stated, the value of the current line will be returned.

You could use this type of routine to perform "relative goto
Jumps", since it would be guite legal now to write:—

120 GOTO USR X+200

...which would continue at line 320, since USR X in this
case will give the value 120.

If you wish to save the program with this routine preset,
you could delete lines 20 to 60, leaving more room for other
program statements. Even if you type RUN, the routine will not be
affected in any way, since the routine is held in the program
statement and not in a variable.

The disadvantages of this method are:-
1) it clutters your screen up when you list the program,
2) the routine must be held in the first line of the

program, a position normally reserved for a REM state-
ment which identifies the program name.

69

Using Machine Code

The advantages are:-

1) the routine is safe from RUN and CLEAR,

2) you always know where the routine is located easily,
which makes it easy to use directly-addressed jump and
call instructions,

3) the routine will be saved with the program, leaving you
free to remove all installation statements.

7.2 Using an arra

The second method involves creating an array which is to
hold the routine within the elements of the array.

The DIM command allocates an array as soon as the command is
executed, and so if a DIM command is placed as the first
instruction in a program, the array will occupy the initial
position in the variables storage section of memory. This address
can be found by studying the contents of system variable VARS.

Provided that the array is a single-dimension string array
(i.e. a fixed length string), the address of the first character
in this string can be obtained by stating:-

LET ADDRESS=PEEK 16400+PEEK 16401*256+6

Again, studying page 174 of the Sinclair book will show you
that there are six bytes of preamble in a single-dimensioned
string array (called "an array of characters" on page 174). This
explains why the line above needs "+6" added on the end, as
otherwise you will be POKEing into things that you shouldn't!

The example given in the previous section can now be written

1 DIM X$ (5)
10 LET X=PEEK 16400+PEEK 16401*256+6

...the rest of the example is then identical, since variable
X is used throughout to refer to the location of the routine and
is independent of whether it uses an array or a REM statement.

You can, however, use the CHRS function to assign values

70

Using Machine Code

with the LET command, so that an alternative solution would be:—

1
10
20
30
40
50
60

100

DIM X$ (5)

LET X=PEEK 16400+PEEK 16401*256+6
LET XS (1)=CHR$ 237

LET XS (2)=CHRS 75

LET X$ (3)=CHR$ 7

LET X$(4)=CHRS 64

LET X$(5)=CHR$ 201

PRINT USR X

Again, lines 20-60 can be deleted once the string has been
set up properly.

Advantages

1)

2)

3)

Your program is not restricted to having a messy REM
statement as the first line of program. Provided the
DIM command is the first assigned variable, you can put
any number of statements in front (e.g. PRINT, FAST,
SLOW, etc.),

The routine can be manipulated by normal BASIC
commands ,

The routine can be saved with the program, thus all
installation statements can be removed.

Disadvantages

1)

2)

Any routine must be relocatable (i.e. it can only use
relative jump instructions - subroutine call instruc-
tions must be simulated by using a stack push and
relative jump seguence),

All variables must be stored with the program, making
it important to avoid RUN and CLEAR and also
redimensioning the array,

Since there are only 26 distinct string variables,
using strings to hold the code could be obstructive.

71

Using Machine Code

7.3 Using the top of memory

This method is one of the safest - your machine code is
protected from all BASIC commands - even NEW. The only way to
destroy the routine is to switch the power off.

Unfortunately, the ZX81 will only SAVE and LOAD the progran:
and variables, thus any routine at the top of memory will not be
included.

The system variable RAMTOP holds the address of the top of
memory which is set up when the ZX81 is switched on.

You can alter this value at any time by POKEing in a
suitable value which lowers this address by the amount of memory
you need. You can now POKE your machine code into this address
and leave it there all day if necessary.

One problem with this method is that the memory does not
become available until NEW is entered - any attempts to POKE into
memory beyond RAMTOP until then will simply be ignored.

The approach I have adopted is to use a special "memory
loader" program which contains all the necessary machine code to
be placed at the top of memory. You must lower the address of
RAMTOP by the appropriate number of bytes required for the rou-
tine, type NEW, then load and run the loader program, which will
move the coding up to the memory at RAMTOP.

If this routine is included at the start of each tape, the
program itself can load another program.

Since the loader program will usually serve the single
purpose of installing machine code at the top of memory, it can
become quite elaborate. The following example program gives an
approximate value of the memory available at any time within the
ZX8l. This can never be extremely accurate as the requirements of
a program alter when it is run. It can serve as a general guide,
however.

In direct mode, enter:-

LET R=PEEK 16388+PEEK 16389*256 {get value of RAMTOP

LET R=R-20 {(reduce it by 20
POKE 16388,R-256*INT (R/256) (replace it

POKE 16389, INT (R/256)

NEW (don't forget thisl!!!

72

Using Machine Code

Now enter this program, save it, then run it:-

10 REM MACHINE CODE LOADER (tape name: "LOADER"
20 LET RAMTOP=PEEK 16388+PEEK 16389*256
30 LET C$="21000039ED5B1C40ED52444DC9"
40 FOR X=1 TO LEN C$-1 STEP 2
50 POKE RAMTOP+INT ((X-1)/2),
(CODE C$ (X) -28) *16+CODE C$ (X+1)-28
60 NEXT X

This program allows you to enter a machine code routine in
hex form. The hex coding is entered into variable C$ in line 30,
while lines 40-60 take each pair of characters, convert them into
binary, then POKE them into the address at RAMTOP.

Note that although the program is used here to load a rou-
tine that calculates the amount of spare memory, it can be used
to load any machine code routine merely by replacing line 30.

Once the routine has been installed, it will remain at the
top of memory until you switch the ZX81 off.

It can be invoked at any time by specifying:-

PRINT USR (PEEK 16388+PEEK 16389%256)

...which in this case will give the number of bytes re-
maining in the ZX81, corresponding to the area marked "spare" in
the memory allocation diagram on page 171 of the Sinclair book.
The machine code routine you have entered reads:—

Assembler mnemonics Hexadecimal value

[RAMTOP]: LD HL,O 21 00 00 ;clear HL
ADD HL,SP 39 jobtain stack ptr
LD DE, (STKEND) ED 5B 1C 40 ;obtain STKEND
SBC HL,DE ED 52 ;give stack-STKEND
LD B,H 44 ;answer in BC
LD C,L 4D
RET C9 ;return to BASIC

73

Using Machine Code

Advantages

1)
2)

Safe from NEW and CLEAR commands,

Extremely long routines can be entered by special
programs dedicated to this one task, thereby leaving
the maximum amount of memory available for other
programs.

Disadvantages

1)

2)

The long-winded method needed to get a routine into the
top of memory, since a NEW command has to be given
somewhere along the route,

Unless you are extremely careful with your work, a
routine will need to use only relative jumps and calls,
otherwise adding extra routines at a later date may be
rather tiresome.

7.4 General points

74

Earlier above, I gave a list of direct commands which reduce
the value of the RAMTOP system variable by 20 bytes. The foll-
owing program is worth adding onto the front of each tape if you
intend to keep machine code routines loaded whenever you switch
the ZX81 on.

Whenever you want to load a machine code routine (possibly
using the loader program above), run this program first to
reserve the necessary space:-

1 REM RAMTOP INITIALISATION (Tape name: "RAMTOP"
2 REM

3 REM

10 PRINT "RESERVE HOW MANY BYTES?"

20 INPUT N

30 LET R=PEEK 16388+PEEK 16389*256 (get existing RAMTOP
40 LET R=R-N (calculate new value
50 POKE 16388 ,R-256*INT (R/256) (put it back again
60 POKE 16389,INT (R/256) (% 2

70 NEW (resets memory

Using Machine Code

Now you can run your loader program directly.

1f you are interested in machine code in any way, then you
may find the next program useful. It allows you to examine por-
tions of memory, specifying addresses in decimal, hex, and will
even recognise certain system variables as being the pointer to
the start address for a hexadecimal memory dump.

Although it will fit into a 1K RAM ZX8l1 with subroutine, 2000
removed (see below), it is not really so useful in that form.

100
110
120
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
1000
1010
1020
1030
1040
1050
1060
1070
1080

REM MEMORY DISPLAY (Tape name: "DUMPl6"
GOSUB 9000 (display rules

LET A=0 (memory address

GOsSUB 1000 {ask for start address
CLs

FOR Y=0 TO SL (number of lines to show
PRINT N+Y*8;TAB 7; (starting address

FOR X=0 TO 7 (print eight bytes

LET Z=PEEK (N+Y*8+X) (get byte value

PRINT CHRS$ (INT (2/16)+28); (convert to hex

PRINT CHR$ (Z2—(INT (2/16)*16)+28);

PRINT " ":

NEXT X {next byte

PRINT

NEXT ¥ (next line on screen
LET A=N+(SL+1)*8 (update default address
PRINT

GOTO 200 (show screen

REM INPUT ADDRESS

PRINT "ENTER ADDRESS (N=CONTINUE}"

INPUT S$

IF NOT LEN S$ THEN GOTO 1020 (ensure something entered
IF S$(LEN 5$)="H" THEN GOTO 1100 (check if hex wvalue
GOsuUB 2000 {check for sys. var. name
IF N THEN RETURN ireturn if special name
LET N=VAL S5$ (otherwise it's decimal
RETURN

75

Using Machine Code

1110 LET N=0
1120 FOR X=1 TO LEN S$-1
1130 LET N=N*16+CODE S$ (X)-28

1140 NEXT X

1150 RETURN

2000 REM CHECK FOR SPECIAL ADDRESSES

2010 LET SL=16 (screen size limit
2020 LET N=0 (converted address

2030 IF S$="N" THEN LET N=A

2040 IF S$="PROG" THEN LET N=16509
2050 IF S$="VARS" THEN GOTO 2100
2060 IF S$="DFILE" THEN GOTO 2120
2070 IF S$="RAMTOP" THEN GOTO 2140
2080 RETURN o

2100 LET N=PEEK 16400+PEEK 16401%256
2110 RETURN

2120 LET N=PEEK 16396+PEEK 16397*256
2130 RETURN

2140 LET N=PEEK 16388+PEEK 16389%*256
2150 RETURN

9000 REM INSTRUCTIONS

9010 PRINT TAB 8;"HEX MEMORY DISPLAY"

9020 PRINT
9030 PRINT " ENTER THE START ADDRESS AS : ",
" (1) A DECIMAL NUMBER",

" (2) A HEX VALUE (E.G. 4EA3H)",
" (3) ""N"" (MEANING ""CONTINUE®®)",
" (4) A SYSTEM VARIABLE NAME -",
L PROG, VARS, DFILE , RAMTOP"
9040 PRINT

9050 PRINT " (PRESS A KEY)"
9060 PAUSE 4E4

9070 POKE 16437,255

9080 CLS

9090 RETURN

Without the 16K RAM pack, you should replace lines 2000-2150
with the following :-

76

Using Machine Code

2000 LET SL=8 (reduce screen size limit
2010 LET N=0
2020 RETURN

Do not enter any of the REM statements, also delete lines
1040, 1100-1150, 9000-9090, and line 110. You will be able to
enter values in decimal, and you lose the facility of entering
system variable names (sorry).

This 1K version is also supplied on the tape as "DUMP".

7.5 Combining routines

This is rather a deluxe machine code routine that allows you
to combine several different routines together and specify which
particular function is required at different times.

The system variables contain a two-byte spare field at
address 16507 which the BASIC system does not affect, although it
is cleared whenever NEW is used.

This field is used by the routine to determine which func-
tion is required. By POKEing a number into this address, the
routine jumps to the appropriate choice. I have included an
assembler listing of this routine in Appendix B, but the various
features are outlined here.

The routine must begin on a page boundary (i.e. the address
must be a multiple of 256). Note that whenever you switch the
ZX8l1 on, the value of RAMTOP will be a multiple of 256, so if you
run the initialisation program given above, you can reserve 256
bytes and be sure that the routine will be located on a page
poundary .

1f you wish to add further routines at a later date, then
vou should study the listing in the appendix. As supplied, the
routine functions are:-—

7

Using Machine Code

value POKEd into 16507 Returned value of USR
0 Estimate of spare memory
1 Address of the display file
2 Address of the BASIC variables
3 Address of spare memory above

the USR routine itself
4 Current line number.

Most of these functions are rather trivial, although they
can be extremely useful by preventing the need for a 2-byte
addition statement with PEEKs. Here's an example of the routine
in use:-

20 LET R=PEEK 16388+PEEK 16389*256 (get routine address
30 EEE 5=16507 (spare sys. variable
100 POKE S,0 (spare memory option
110 LET SPARE=USR R (get it

120 PRINT "THERE ARE ";SPARE;" BYTES LEFT" (print it

130 EQEE_SrZ (variables address
140 LET V=USR R (V now holds address

(of BASIC variables

"en e

Lines 130 and 140 effectively replace:-

130 LET V=PEEK 16400+PEEK 16401*256

...and save you 18 bytes of program memory.

So what about this super routine? You can enter it by alter—
ing line 30 in the "Machine Code Loader" program to the following
(shown as you will see it on the screen when you enter it) :-

30 LET C$="3A7B40FE05D05F1600211 (Tape name: "SELECTOR"

00060196EE91522272C3121000039EDS
B1C40ED52444DC9ED4BOC40CIED4B104

0C901003644C9ED4B0740C9"

78

Using Machine Code

Run the loader program, then try the small test program to
see how many spare bytes you have. If you are entering a
particularly large program (more so when the 16K RAM pack is
attached), it is always good to see whether or not you are
heading towards disaster. It takes quite a long time to type a
large program, so any indication at an early stage that you may
be tight for space is worthwhile.

*%% Stocking Filler ***
Definitely suitable for : 1K RAM

Try to outsmart your opponent (the ZX81). After a short
random time, the computer shoots at you. If you press a key
before it shoots, you can stop it from firing, but don't be too
quick, or it'll shoot anyway!

10 LET R=INT (RND*200)

20 FOR X=1 TO R+50

30 1F INKEY$<"" THEN GOTO 100

40 NEXT X

50 PRINT AT 11,14;"**BANG**" {use inverse characters
60 GOTO 200

100 IF R-X<10 THEN GOTO 150

110 PRINT AT 9,15;" I'TCHY"

120 FOR X=X 10 R
130 NEXT X
140 GOTO 50

150 PRINT AT 11,14;"CLICK...",,,,"SAVED"
200 PAUSE 4E4

210 CLS

220 RUN

ZX80 owners:—
Alter line 10 to 10 LET R=INT (RND*B00)
Alter line 100 to 100 IF R-X<40 THEN GOTO 150

79

Dice Simulation

Suitable for : 1K RAM

How can you impress your
friends? If you are particu-
larly fond of board games, then
this program will help. It
rolls two dice and shows you
the faces. After each roll you
only need to press a key to
roll again. Who would imagine
that £70-worth of computer
could be used to simulate dice?
It certainly saves you from
searching to find them when
they've fallen off the table!

I have used a novel technique in writing this program - the
ideas were introduced in an earlier section (Efficient
Programming), but here you can see some of those points in
practice.

The number of numeric literals (e.g. 2 or 8 as opposed to
variables) has been kept to an absolute minimum. Since a literal
occupies six bytes in a program statement, these can be extremely
wasteful when the same literal is used repeatedly. In lines 10-30
of this program, I set up three variables containing the values
2, 4 and 8 (notice how it's done - even this is cheaper than
writing LET T=2, LET F=4 and LET E=8 since "LET F=T+T" occupies
11 bytes, whereas "LET F=4" occupies 15).

Wherever a reference to a literal was originally used, 1
have altered it to use the variables T,F and E instead. In some
cases, where the value 12 is needed, I have referred to E+F
instead - a saving of 5 bytes each time.

One particularly useful item to note is that the value 1 can
be obtained by dividing any variable by itself. Thus T/T equals 1
and also requires 4 bytes less in memory. This may seem
ridiculous, but you are sacrificing speed for the sake of memory.

As an exercise, you may like to enter this program, but
change all references to E,F and T back into literals. As you

80

Dice Simulation

enter the program, you'll notice that memory starts to fill
between lines 1100 and 1200. The program will not even run -
error report 4 is given almost immediately. This shows that the
idea is not useless, and you should try to keep an eye on the
number of literals that you use in a program.

Tape name: "DICE"

1 REM DICE ROLL
2 REM

10 LET T=2 (set up literals as variables
20 LET F=T+T

30 LET E=F+F

40 RAND
100 CLS
110 LET A=E (A & B are the screen position
120 LET B=T+F
130 GOSUB 1000 (draw a die face
140 LET A=E*F (place second die
150 GOSUB 1000 (draw it
200 PAUSE 4E4 (pause forever....
210 POKE 16437,255
220 GOTO 100 (keep doing same thing
1000 LET S=INT (RND* (T+F))+T/T {get random no. 1-6
1010 FOR X=A T0 A+E+E (draw a box

1020 PLOT X,B

1030 PLOT X,B+E+E

1040 NEXT X

1050 FOR X=B TO B+E+E
1060 PLOT A,X

1070 PLOT A+E+E,X

1080 NEXT X

1100 IF S<>INT (S/T)*T THEN PLOT A+E,B+E (paint the "spots"
1110 IF S<T THEN RETURN
1120 PLOT A+F,B+E+F
1130 PLOT A+E+F,B+F
1140 IF S<F THEN RETURN
1150 PLOT A+E+F,B+E+F
1160 PLOT A+F,B+F

81

Dice Simulation

1170 IF S<T+F THEN RETURN
1180 PLOT A+F,B+E

1190 PLOT A+E+F,B+E

1200 RETURN

**k Stocking Filler *#*#*
Definitely suitable for : 1K RAM

You must take a shot at a target as you run past. Press any
key to shoot at the target. Press any key to start a new game
afterwards. Run in slow mode (ZX80 users will need to add some
PAUSE statements at the appropriate places).

10 LET T=INT (RND*40)+4

20 PLOT 63,T

100 FOR Y=0 TO 43

110 PLOT 0,Y

120 IF INKEY$<"" THEN GOTO 200

130 NEXT Y

140 PRINT AT 20,8;"TOO LATE"

150 GOTO 300

200 FOR X=0 10O 63

210 PLOT X,Y

220 NEXT X

230 IF Y=T THEN PRINT AT 21,8;"WELL DONE"
240 IF Y<>T THEN PRINT AT 21,8;"MISSED"
300 PAUSE 4E4

310 CLS

320 RUN

ZX80 owners only add:—

115 PAUSE 10
305 POKE 16437,255

82

NUMERIC CONVERSION

8.1 Why not use VAL?

Although the 2ZX8l1 has an extremely useful VAL function, it
doesn't quite conform to MicroSoft Basic conventions (this
doesn't mean it's bad - just different). The problem is that a
program cannot input a string and then use VAL to see if the
input was numeric, since the act of using VAL may give an error B
if the string is not a numeric expression.

Why should we need to input a number as a string? There are
several reasons, the main one being to make your programs more
"robust". This means that invalid information will be spotted
before the ZX81 gets a chance to give an error report code.

Try this:-

10 PRINT "HOW OLD ARE YOU? ";
20 INPUT A
30 PRINT A

Now when you run this, try entering a number like TREE, or
CAT or something absurd. You'll quickly get an error of 2/20, or
maybe even worse. This obviously isn't much use when you're
halfway through playing a game and you enter the wrong reply!

This subroutine lets you convert a string to a numeric
variable, and gives an answer of zero if the string was non-
numeric. It only caters for positive integer values in the
string, although you may have fun converting it to handle both
negative numbers and numbers with decimal fractions.

You should notice that the routine will give a zero reply if
the string contains the number "0", so it should be used in cases
when a zero value is not a legitimate value.

83

Numer ic Conversion

8.2 The Subroutine
To use the subroutine, string variable A$ should contain the
string that is to be checked and converted.
On returning, variable X will contain the numeric egquivalent
of the string (if it was numeric), otherwise it will contain
ZEero.

Tape name: "VAL"

9500 REM SET X=VAL(AS)
9510 LET X=0

9520 FOR Y=1 TO LEN AS

9530 IF A$(Y)<"0" OR A$(Y)>"9" THEN GOTO 9570
9540 LET X=X*10+VAL AS (Y)

9550 NEXT Y

9560 RETURN

9570 LET X=0

9580 RETURN

Here's the example we used earlier, but altered to use the
conversion subroutine. Try to break this. You'll soon see how
much more robust it is, and how you have to consciously search
for a way to defeat the program!

100 PRINT "HOW OLD ARE YOU? ";
110 INPUT AS

120 PRINT A$

130 GOSUB 9500

140 IF X<>0 THEN GOTO 200

150 PRINT AS;"? THATS NOT AN AGE"
160 GOTO 100

200

84

Fruit Machine
Suitable for : 1K RAM

This program gives you the
chance to see how quickly you
can spot winning combinations.

The program continually
shows a selection of three
characters and you may press
any key when you see a winning
combination being printed. If
you are quick enough, your
total score will be updated by
an amount depending on the
combination you have stopped.
Winning combinations are:-

x 202 Pays 2
LRl s Pays 10

Any two same pays 5 (except * * ? - see above)
Three of a kind pays 50

You can initially set the speed of the selection - this
actually is the time during which the program detects the
pressing of a key, where a speed of 50 allows roughly one second
in which to stop a winning combination, although you may find
this a bit too slow once you have got the idea. If you enter a
speed of zero (or even a negative value) you will not be able to
stop the program at all (except by using BREAK), since the INKEYS
function will never be executed!

Press "Q" if you want to guit and see your total score.

There is one point to watch out for - if you stop the pro-
gram on a non-scoring combination, you lose ten points!

Fruit Machine

Tape name: "FRUIT"

10
20
30
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
300
310
320
330
1000

LET 5=0 (initial score
PRINT "SPEED?"

INPUT F

LET zg="" {(main loop

FOR X=1 TO 3 ("roll" wheels
LET Z$=Z$+"*E£+—=.$" (INT (RND*7)+1)+" " (...choose wheel
NEXT X

SCROLL

PRINT Z$; (print wheels

FOR X=1 TO F (delay for key

IF INKEY$<>"" THEN GOTO 200

NEXT X i

GOTO 100 (no key - try again
IF INKEY$="Q" THEN GOTO 1000 (see if quitting
LET W=-10 (false stop score
IF Z$(1)="#*" THEN LET W=2 (calculate score
IF 2$(1)=2$(3) OR Z$(3)=2$(5) OR Z$(1)=2$(5) THEN LET W=5

IF 7$(1)=2$(3) AND 2$(1)="*" THEN LET W=10

IF Z$(1)=2$(3) AND 2$(1)=2$(5) THEN LET W=50

PRINT "PAYS ";:W (print payout
SCROLL

LET S=5+W (update total
GOTO 100

PRINT "YOU GOT ";S (end of game

ZX80 users: Delete line 180, alter line 160 to 160 PAUSE F

If you have a 16K RAM pack, then you may like to add the
following lines to improve the play slightly. It allows you to
specify how long (in minutes) you wish to play the game. Every
time you score a win, the game gets slightly faster, and when you

lose,

it slows down. The objective is to score the highest poss-

ible score within a certain time (say two minutes).

Don't forget that these are additional lines to the previous
program, with the exception of line 20 which replaces the orig-
inal one.

86

Fruit Machine

Tape name: "FRUIT16"

b
2

20

35

40
50
60
70

105

325
327

1010
2000
2010
2020
2030

REM 16K FRUIT MACHINE
REM *#%#%ddkodkokskk sk skkk

PRINT "STARTING SPEED?"
IF F<1 THEN GOTO 20

PRINT "HOW LONG? (MINUTES)"
INPUT N

IF N<1 OR N>10 THEN GOTO 40
POKE 16437,128+N*12

IF PEEK 16437=128 THEN GOTO 2000

LET F=F- (W/10)
IF F<1 THEN LET F=1

STOP
SCROLL

PRINT "*** TIME [P *%*"
SCROLL

GOTO 1000

(change message
(check speed 0.K.
(get time

(check it's 0.K.
(start timer

(see if time elapsed

(alter game speed
(keep eye on speed

(new "time up" code

87

ZX8l Adventure — Create Your Own

Suitable for : 16K RAM

This program allows you to
create your own adventure-type
games on the ZX81! A complete
game is included for you to see
how it is done, and also to
give you a bit of fun into the
bargain.

I1f vou are already ac-
guainted with the original Ad-
venture game, then you may
prefer to skip the next few
paragraphs.

Adventure was originally
written to run on computers
somewhat larger than a ZX81 (having roughly 256K bytes of memory
available - think about that!), and running faster as well. The
game does not vary from one run to another, as the layout of the
game remains fixed. Although this may seem a bit limited, the
original version is so large that you become bored with playing
before you find out all there is to know.

So how is it played? The game takes place in a network of
caves, and the object of the game is to gather all the treasure
that is dotted around in these caves. Some of the treasure cannot
be taken straight away - for example, there is a pearl stuck
inside a giant clam, and part of the fun of the game is to
discover a way of getting the clam open.

At each turn, you are given a description of your current
location. Then the game waits for you to type in up to two
keywords. These keywords may ask for you to be moved in a certain
direction (for example: GO SOUTH or WALK EAST or CLIMB UP) or to
manipulate an object which is in sight - TAKE GOLD or TAKE JEWELS
etc.

The objects are not necessarily treasures; they may seem
useless at times, but nearly always have some use throughout the
game to enable you to get past an obstacle.

88

ZX81 Adventure

In order to give the game some "spice", dwarves pop up at
random and throw knives at you (if one hits you, you are killed),
although you can retaliate with an axe or some other weapon.

Since the original game is too vast to run on a Zx81, I have
borrowed several ideas from different sources to bring a version
which can be tailored to run many different games - you will be

quite capable of producing your own and swapping them with
friends. The game comes in three portions:-

Adventure Master program which controls the flow of the

game and checks that all
commands are suitably obeyed

Adventure Loader which allows you to set up
games of your own

Adventure Information this makes each game unique -
it contains the room

descriptions, keyword actions,
objects etc.

Steps in creating your Adventure

If this is your first encounter with Adventure-type games, I
would suggest that you start by entering the games in this
section, playing them, then returning to this text when you have
a better idea of the capabilities of the game.

The steps involved in creating a game are as follows:—

1. Enter the Master program and the Loader routine

together. Save this combination on tape, as it becomes
the basis for all your own games.

2. Enter the text messages and room descriptions (use
either "The City of Alzan" or the mini-test game found
later on).

89

Z¥81 Adventure

3. Type RUN 9000 to start the Loader program. Enter all
the arrays and variables as given in the appropriate
game. The Loader program will automatically save the
program for you.

4. Start the game by GOTO 10 (not normally required, since
the Loader program ensures that the game starts once
loaded from tape).

How the Master program works

The following discussion may seem involved, but if you
follow the Test Adventure carefully (I have annotated it fully),
you should quickly grasp the way that the Master program works.

Referring to the three portions of the game mentioned
above, the Information section requires several items in order to
make a complete game. You may like to look at the Test Adventure
while you see how the Information section is built up. The items
required are:-

1. Room descriptions

Each room has a unigue number associated with it in the
range 1 to (max. no. of rooms), and the Master program
causes a subroutine call to line 8000+ (room*10) so that
the room description can be printed. This means that
the description for room number 1 should start at line
8010, and a RETURN statement should be included after
the description is printed. Room 2 description will be
at line 8020, room 3 at 8030, and so on.

2. Text messages
These are messages which are printed by the Master
program on request (see later). The reason for printing

these messages can be extremely varied - for example,
if the keywords "LIGHT LAMP" are entered, and the lamp

90

ZX81 Adventure

is already 1lit, then you may want to print a message
saying so. As for rooms, each message has a unigue
number starting from 1, and message number 1 should be
placed at line number 7010 (followed by a RETURN state-
ment). Message 2 should be placed at line 7020, and so
on.

3. Objects

Objects can be used by the player throughout the game -
either carried or just manipulated in some way. Each
object needs an entry in two arrays — O() which tells
the Master program in which room the object is (ini-
tially) located, and 0$() which contains the text des—
cribing the object. This description is 16 characters
in length (although you could alter this if required
for a particular game). The simple variable O contains
the total number of objects. An object which does not
initially exist must be given a room number of zero.

4. Vocabulary

This table gives a list of the keywords that your game
will recognise as words to be acted upon (in some way).
With each word is a two-digit number that this keyword
is translated into, so that two different keywords can
be translated into the same action {e.g. LEAVE and EXIT
would both be given the same two-digit code as they
both nave the same interpretation). The first twelve
keywords are reserved for direction commands {NORTH,
S0UTH, UP, DOWN etc), but this is not totally inflex-
ible. These keywords are held in array v$(), and each
entry is 6 characters long. The first four are the
keyword (only the first four characters of the keyword
are matched) and the last two are the two-digit "tran-
slated code" number. Note that the code number must
have a leading zero for codes less than 10. Variable v
should contain the total number of keywords in the
array vVs().

91

ZX81 Adventure

5. Room connection table

Array M$() contains a table of the "tunnels" connecting
each room. For every room, there is an entry showing
the number (and direction) of tunnels leading away from
the room. Each tunnel requires four characters - two to
give the keyword code corresponding to the direction of
this tunnel, and two representing the room number that
the tunnel leads to (with leading zeros if necessary).
A keyword code of "00" indicates the end of the list
for this room. As an example, room 1 would be held in
M$ (1) and might look like:-

MS$ (1) "0127061300"
This indicates that keyword code 01 will cause the
Master program to continue at room 27, while keyword
code 06 will cause the Master to continue at room 13.
The final 00 signifies the end of the list.

variable R should contain the total number of
rooms. Array M$ allows for 32 characters per room
maximum - this will be adequate for almost any set-up.

6. Action table

The action table gives a list of actions to be per-
formed when certain keywords (or combinations of key-
words) are entered. Note that direction movements are
catered for by the Room Connection table above. Each
entry in the Action table gives:-

Keyword 1 code (or 00 if any word is sufficient)

Keyword 2 code (or 00 if any word is sufficient)

Further conditions

Actions to be performed if all conditions are met.
A small example at this stage might be :- "If the
keywords "LIGHT LAMP" are entered and the lamp is
already alight, then display message 5".

A full list of available conditions and actions
can be found below, but the overall format of each
entry is:-—

ZX81 Adventure

AABBCO1C02.A01A02A03.
-.where AA and BB represent the keyword codes for two
keywords, C0l C02 represent additional conditions (you
may have more than two) followed by a full-stop which
indicates the end of conditions. Next follows the
appropriate action codes (A0l A02 and AQ3 - again, you
may have more if you wish) also terminated by a full-
stop. A complete example is given after the tables
below.

Array AS$() contains the action table, and variable
A must contain the total number of items in the array.

The limit of each entry in array AS$() is 31
characters. If this should be insufficient, you can get
round the problem by including one action that sets a
temporary marker. Further entries can be added into the
array C$() which test for this marker and continue the
required effects, then unset the temporary marker, This
idea is used in "The City of Alzan".

7. Conditional table.

This table is almost identical to the Action table, but
does not have any associated keywords. This table is
scanned before each command is entered, and allows you
to cater for some special circumstances, such as having
a dwarf pop up in front of the player, or displaying
different messages dependant on certain conditions.
Array C$() contains the conditions and variable C con—
tains the total number of items in the array. The
format of each entry is:—
C01C02.A01202.
--.where C01 C02 AQ1 etc are defined as for the Action

table. Notice the full-stops that terminate both the
conditions and actions.

The various conditions you may use consist of three—
character codes. The first is a letter which signifies the
desired condition, the last two are a two-digit parameter
associated with the condition (shown as nn below) :—

93

94

Condition code

ZX81 Adventure

Test made

mGm B Om

&
a
£
5

o0 wr

T Gm ™

[

code

nn is the current room number
Object nn is here (or being carried)

Object nn is not here (or being carried)
Object nn is being carried

Marker nn is set

Marker nn is not set

Countdown nn has reached value 1
Random number from 1-99 is less than nn

Action performed

Print list of objects carried

Carry object nn

Put down object nn

Display text message nn - causes GOSUB
to line 7000+ (nn*10)

Set marker nn

Unset marker nn

Set countdown nn to the value mm

Swap objects nn and nn+l in the object
table

Set object nn into current room number
Set object nn room number to 00

Set current room number to nn (i.e.
forced move to room nn)

Print "OKAY" and await a new command
Await a new command

Await a new command, but the Conditional
table is not scanned first

Describe current room then await new
command

Abandon the game (player is asked "ARE
YOU SURE?" and if the answer is Y then
the game is abandoned)

Stop the game

ZX81 Adventure

Here is an example of these in use:-

The keyword "TAKE" has (say) the keycode 15, and "GOLD" has
the keycode 22. The object "gold" is number 3.
Suitable entries into the Action table might be:-

1522B03.B03L.

This means:—

Keywords 15 and 22 must be typed (TAKE GOLD), and the
condition B03 must also be true (i.e. object 03 must be here or
being carried). If this is true, then actions B03 and L are
obeyed - object 03 is now carried, and then the message "OKAY" is
printed and a new command is input.

There are 10 "markers" that can be set/unset and tested (see
the above tables). All markers are initially unset. Markers 1 to
3 have a special significance to the Master program, but all
others can be used as required. The special ones are:-

1 Indicates the total number of objects being carried

2 Tells the Master program whether the room is a "dark"
room or "light" room - i.e. whether a lamp is required
in order to see.

3 Tells the Master program whether a lamp is off or on.

If the room is a "dark" room, and the lamp is off, the

Master program prints a message "IT IS DARK. BETTER GET SOME
LIGHT OR YOU MAY BE IN TROUBLE".

Marker 2 should be unset when the player is above ground, and
set once he goes underground.

There are also 5 countdown markers that are for general
use. They can be set to any desired two-digit value by using
Action code G. This code requires two parameters - the countdown
number and the value it is to be given. E.g. G0105 would set
countdown 1 to the value 5. Countdowns 1 to 4 are automatically
reduced under certain conditions by the Master program:-—

7ZX81 Adventure

Reduced each time a command is entered.

Reduced each turn when marker 2 is set (i.e. when the
player is in "dark" rooms).

Reduced each turn when marker 2 is set but marker 3 is
not — i.e. when the player has not got a lamp on but it
is dark. This lets you drop the player in a pit after
(say) three moves in total darkness.

Reduced each time a command is entered (as for count-
down number 1) .

Condition 7 lets you test if a countdown marker has reached
the value 1, so that you can perform some actions once a limit
has been reached.

You should note the following points:-—

Ls

A maximum of 5 objects can be carried at any one time
(line 4100 in the Master program). Further objects can
only be picked up if another object is dropped first.

The Master program checks that you are not already
carrying an object when it obeys action B, and that you
are carrying the object when it obeys action C. This
saves quite a considerable number of items in the
Action table.

At the end of the program listing, you will find a small
"test" adventure of four rooms, which will allow you to see what
is going on and also see if your new program works.

You may like to send a copy of your own Adventure games to
us at the address given at the front of this book - if we receive
enough good ones to publish, we will pay for all those included.

1 REM 7ZX81 ADVENTURE MASTER Tape name: "“ADVENT"
2 REM kkhkhkhkkhkikkhhkkkhkhhhhkk

3 PRINT "DO NOT USE "®RUN"®." (see pages 95-96
10 DIM S(10} (switch array
20 DIM C(5) (countdown array

96

30
40

50

60
70
80
100
110
120
130

140
150
200
210
220
300
310
320
330
340
350
400
500
1000
1010
1020
1100
1110
1120
1130
1140
1150
1160
1170
1200
1210
1220

ZX81 Adventure

LET ROOM=1
DIM P$(2,2)
DI 0(0)

FOR X=1 TO O

LET O(X)=Q(X)

NEXT X

IF NOT 5(2) THEN GOTO 200
IF C(2) THEN LET C(2)=C(2)-1
IF S(3) THEN GOTO 200

(initial room no.
(keywords 1 & 2

(objects array - type the
(letter "O" and not "@g".
(set up objects initially

(test if darkness

(darkness countdown
(see if lamp on

PRINT "IT IS DARK — BETTER GET SOME",
"LIGHT OR YOU MAY BE IN TROUBLE."

IF C(3) THEN LET C(3)=C(3)-1
GOTO 1000

REM DESCRIBE ROOM

PRINT

GOSUB 8000+ROOM*10

LET F=0

FOR X=1 TO O

IF O(X)<>ROOM THEN GOTO 500
IF F THEN GOTO 400

PRINT ,,"THERE IS ALSO:"
LET F=1
PRINT "
NEXT X
REM ACCEPT COMMAND

LET T=1

GOTO 2000

IF C(1) THEN LET C(1)=C(1)-1
IF C(4) THEN LET C(4)=C(4)-1
PRINT ,,">"

INPUT Y$

CLS

LET Y=0

PRINT ">":v$

LET P$(2)="00"

FOR W=l TO 2

GOSUB 6000

IF Y>=LEN Y$ THEN GOTO 1300

;08 (X)

(no lamp countdown
(wait for a command

(print room description
(reset flag
(print any objects here

(await a command
(first check automatics

(countdown every command
(countdown every command
(prompt - use inverse

(input command

{command scan
(print command at top

(get (up to) two keywords

(check if all scanned

97

98

1230
1240
1300
1310
1320
1600
1610
1620
1630
1640
1650
1660
1700
1710
1900
1910
2000
2010
2100
2110
2120
2130
2300
2310
2320
2330
2340
2350
2400

2410
2420
2430
2600
2610
2700
2710
2720
2800

7X81 Adventure

IF P$(W)="00" THEN GOTO 1210
NEXT W

IF P$(1)<>"00" THEN GOTO 1600
PRINT " PARDON?"

GOTO 100

REM CHECK FOR MOVEMENT

LET z=1

LET T$=M$ (ROOM) (2 TO 2+1)

IF T$="00" THEN GOTO 1900

IF T$<>P$(1) THEN GOTO 1700

(was the keyword found?
(next keyword

(was at least one word?
(printed if nothing found
(try again

(now scan movement table
(get matching keyword
(check if end of entry
(see if it matches word 1

LET ROOM=VAL (M$ (ROOM) (2+2 TO Z+3))

GOTO 100

LET 7=2+4

GOTO 1620

LET T=0

LET MATCH=0

REM CHECK FOR CONDITIONALS
LET CP=0

LET CP=CP+1

IF NOT T THEN GOTO 2300
LET ES$=C$ (CP)

GOTO 2600

IF CP<=A THEN GOTO 2400
TF MATCH THEN GOTO 1000

PRINT "YOU CANT";

{continue in new room
(try next match

(set "Action table" flag
(no match found yet

{table subscript number

(see if scanning Action
(get from Conditionals

(have all been scanned?
(has a match been found?
(print message

IF VAL (P$ (1)) <13 THEN PRINT " GO THAT WAY";

PRINT "."
GOTO 100

(try again

IF AS(CP) (1 TO 2)<>P$ (1) THEN GOTO 2100

LET Y$=AS$ (CP) (3 TO 4)

(check if matches key 1
(get keycode 2

IF Y$<>"00" AND Y$<>PS$(2) THEN GOTO 2100

LET E$=A$(CP)(5 TO)

REM CONDITIONS

LET E=1

IF E$(E)="." THEN GOTO 3000
LET TYPE=CODE (E$ (E))-38
LET N=VAL (ES$(E+l TO E+2))
GOSUB 2900+TYPE*10

(get conditions/actions

(now scan further conds.
(full-stop ends conds.
(get condition code

(get parameter

(evaluate if true/false

ZX81 Adventure

2810 IF NOT OK THEN GOTO 2100

2820 LET E=E+3 (try next condition
2830 GOTO 2700

2900 L@TOI@ {N=ROOM) (condition & - see
2905 RETURN { text

2910 LET OK=(O(N)=ROOM OR O(N)<0) (condition B

2915 RETURN

2920 LET OK=(O(N)<>ROOM AND O(N)>=0) (condition C
2925 RETURN

2930 LET OK=(O(N)<0) (condition D
2935 RETURN

2940 LET OK=S (N) (condition E
2945 RETURN

2950 LET OK=(NOT S(N)) {(condition F
2955 RETURN

2960 LET OK=(C(N)=1) (condition G
2965 RETURN

2970 LET OK=((INT (RND*100)+1)<=N) {condition H
2975 RETURN

3000 REM ACTIONS

3010 LET MATCH=1 (now perform actions
3020 LET E=E+1

3100 IF ES(E)="." THEN GOTO 2100 " (all done?

3110 LET TYPE=CODE (ES (E))-38 (get action code

3120 IF ES (E+1)<>"." THEN LET N=VAL (E$ (E+l TO E+2))
(get any parameter

3200 LET BREAK=0 (return line number
3210 GOSUB 4000+TYPE*100 (perform action

3220 IF BREAK THEN GOTO BREAK (goto relevant line
3230 @ E=E+3 (next action

3240 GOTO 3100

4000 PRINT (action A - see table
4010 PRINT "YOU ARE HOLDING:"

4020 LET F=1

4030 FOR X=1 TO O (the letter "O" not "g"
4040 IF O(X)>=0 THEN GOTO 4070

4050 PRINT " 208 (X)

4060 LET F=0

4070 NEXT X

99

4080
4090
4095
4100
4110
4120
4130
4140
4150
4160
4170
4180
4190
4200
4210
4220
4230
4240
4250
4260
4300
4310
4320
4400
4410
4500
4510
4600
4610
4620
4700
4710
4720
4730
4800
4810
4900
4910
4920

100

7Z¥X81 Adventure

IF F THEN PRINT " NOTHING."
LET BREAK=100

RETURN

IF S(1)<5 THEN GOIO 4140

PRINT "YOU CANNOT CARRY MORE."

LET BREAK=100

RETURN

IF O(N)=-1 THEN GOTO 4180
LET O(N)=-1

LET S(1)=S(1)+1

RETURN

PRINT "YOU ALREADY HAVE IT."
GOTO 4120

IF O(N)=-1 THEN GOTO 4240

PRINT "YOU DONT HAVE ";O0$ (N)
LET BREAK=100

RETURN

LET O(N)=ROOM

LET S(1)=S(1)-1

RETURN

PRINT

GOSUB 7000-+N*10

RETURN

LET S(N)=1

RETURN

LET S(N)=0

RETURN

LET C(N)=VAL (E$ (E+3 TO E+4))
LET E=E+2

RETURN

LET X=O(N)

LET O(N)=0(N+1)

LET O(N+1)=X

RETURN

LET O (N)=ROOM

RETURN

IF O(N)<O THEN LET S(1)=S(1)-1

LET O(N)=0
RETURN

(action B

{action C

{action D

(action E
(action F

(action G

(action H

{action I

(action J

ZX81 Adventure

5000 LET ROOM=N (action K
5010 RETURN
5100 PRINT " OKAY." (action L
5200 LET BREAK=1000 (action M
5210 RETURN
5300 LET BREAK=1100 {action N
5310 RETURN
5400 LET BREAK=100 (action O
5410 RETURN
5500 PRINT " ARE YOU SURE? "; (action P

5510 INPUT W$
5520 PRINT W$

5525 LET BREAK=1100

5530 IF CHR$ CODE W$<>"Y" THEN GOTO 5400

5600 GOTO 9999 (action Q
6000 REM REMOVE WORD

6010 DIM W$(4) (first four letters
6015 LET P$(W)="00" (set "not found” reply
6020 GOSUB 6600 (find first character
6025 IF END THEN RETURN (test if end of command
6030 POR 0=1 TO . pie} 4 (get four letters

6040 LET W$(Q) =Y$ (Y)

6050 GOSUB 6500 (check if word end
6060 IF END THEN GOTO 6100

6070 NEXT Q

6080 GOSUB 6500 {look for end of word
6090 IF NOT END THEN GOTO 6080

6100 IF Ws=") THEN RETURN {no word entered

6110 EOR =110V (scan vocabulary table
6120 IF W$= V$ (Q) (3 TO) THEN GOTO 6200

6130 NEXT Q

6140 RETURN {not found in table
6200 LET P$(W)=V$(Q) (TO 2) {get keyword code number
6210 RETURN

6500 LET Y=Y+l {check for end of word

6510 LET END=(Y>LEN Y$)
6520 IF END THEN RETURN

6530 LET END=(Y$(Y)=" ") (don't forget the space!
6540 RETURN
6600 LET Y=Y+1 {look for end of word

101

ZX81 Adventure

6610 LET END=(Y>LEN Y$)
6620 IF END THEN RETURN

6630 IF ¥$(Y)=" " THEN GOTO 6600 (don't forget the space!
6640 RETURN

7000 REM ACTION MESSAGES

7001 REM MESSAGE NO. 1 CAUSES

7002 REM GOSUB TO LINE 7010

7999 RETURN

8000 REM ROOM DESCRIPTIONS

8001 REM ROOM 1 CAUSES A

8002 REM GOSUB TO LINE 8010

9999 STOP

Now that you have the "central manager" portion, you need
two further items before you can start running a game. First is a
"game loader" routine that initialises all the essential arrays
{(like the object table, interconnecting room table, vocabulary
table, and the automatic and conditional event tables) plus a few
other variables. The second item is the game itself - all you
have here is something that allows you to quickly create your own
adventures,

Two complete mini-adventures are included here for you to
load and run yourself, so that you can see how it all fits
together (and have a laugh, I hope!), but first, here's the
loader routine.

Adventure Loader

This routine should be included with the manager program
above, but it can be removed once the various arrays have been
properly installed. I would advise you to keep the routine in
your game until you have tested it properly - if you miss a few
words out of the vocabulary table (or any other table) and you
want to re-enter it, then you'll feel mad if you've just deleted
the loader routine!

When you run it, it asks how many items are reguired in each
array (like the vocabulary table), then dimensions the array, and
inputs the elements one-by-one. It stops after each array has
been created, thus giving you an opportunity to check what you've

102

ZX81 Adventure

done. If you are re—entering an array that was incorrect, it also
gives you a chance to re-input only one array and not all of

them.

9000
9010
9020
9030
9040
9050
9080
9090
9100
9110
9120
9130
9140
9150
9160
9170
9199
9200
9210
9220
9230
9240
9250
9260
9270
9280
9299
9300
9310
9320
9330
9340
9350
9360
9370

REM GAME ARRAY LOADER
CLS

PRINT "NO. OF OBJECTS?"
INPUT O

DIM Q(O)

DIM 0% (0,16)

FOR X=1 TO O

SCROLL

PRINT "NO. ";X;" ROOMZ",

INPUT Q(X)

PRINT Q(X)

SCROLL

PRINT "DESCRIPTION?",
INPUT 0S$ (X)

PRINT OS (X)

NEXT X

STOP

as

PRINT "NO. OF WORDS?"
INPUT V

DIM V$ (V,6)

FOR X=1 TO V

SCROLL

INPUT V$ (X)

PRINT V$ (X)

NEXT X

(type the letter "O" not "g".

(use CONT to continue

STOP {use CONT to continue

CLS
PRINT "NO. OF ROOMS?"
INPUT R

DIM M$ (R, 32)

FOR X=1 TO R

SCROLL

INPUT M$ (X)

PRINT MS$ (X)

103

ZX81 Adventure

9380 NEXT X

9399 STOP (use CONT to continue
9400 CLS

9410 PRINT "NO. OF CONDITIONALS?"

9420 INPUT C

9425 LET C=C+l

9430 DIM C$(C,21)

9440 FOR X=1 TO C-1

9450 SCROLL

9460 INPUT C$(X)

9470 PRINT C$ (X)

9480 NEXT X

9490 LET C$(C)=".N."

9499 STOP (use CONT to continue
9500 CLS

9510 PRINT "NO. OF ACTIONS?"

9520 INPUT A

9530 DIM A$ (A,31)

9540 FOR X=1 TO A

9550 SCROLL

9560 INPUT AS (X)

9570 PRINT A$ (X)

9580 NEXT X

9599 STOP (use CONT to continue
9600 CLS

9610 PRINT "ENTER THE ADVENTURE NAME"
9620 INPUT N$

9630 PRINT ,,"START THE TAPE..."

9640 PAUSE 150

9645 POKE 16437,255

9650 CLS

9660 SAVE N$

9670 GOTIO 10

9999 STOP

Before you get a real-live game, here follows a "test"
Adventure for you to enter. It should give you a good idea as to
how the program works, how you can create your own Adventures,
and whether all your typing has been accurate.

104

ZX81 Adventure

Test Adventure

This mini-test adventure uses 6 rooms. Room 1 is above
ground, and a lamp can be found there. The objective is to get
the bar of gold out of the caves back above ground. The gold is
hidden in cave 6 behind a rusty door (cave 4), which will not
open. Cave 5 contains a vase and cave 6 contains a pool of oil.
Obviously, you must fill the vase with oil and then oil the door!
Once this has been done, you can open the door and reach the
gold.

A map of the cave looks like this:—

Markers 2 and 3 are usea, as usual, to represent "dark"
roons and lamp off/on respectively. Notice that when the "1it"
lamp (object number 2) is dropped, the lamp is marked as off,
which prevents you from lighting the lamp then leaving it
somewhere while you wander off.

tlarker 5 is used to indicate when the door has been oiled,
and marker 6 is set when the door is open.

105

Test adventure

Enter the text messages and room descriptions, then RUN 9000
to start the Loader routine. The objects, vocabulary, room
connections, conditionals and keyword actions are all entered at

this stage.

Once you have completed this, SAVE THE PROGRAM!!!

Start the program by GOTO 10 (otherwise you'll destroy the
variables). Check that it works according to the rules above and
you can be fairly sure that you have entered your Master program
without any serious defects.

You should notice the way this is created in order to assist
you with producing your own games.

One item of importance is shown between rooms 1 & 2 and also
4 & 6. In the first case, there is no tunnel indicated in the
room connection table between rooms 1 and 2. Instead, an entry
has been included in the Action table under the appropriate
keyword (06). This is because I want to make sure that the
"darkness" marker is set on whenever the keyword "DOWN" is given
from room number 1.

Similarly, there would be no point in entering a connection
between rooms 4 and 6, since the door is supposed to block the
path. Consequently, an entry is found in the Action table (03 00
A04 FO06....) which checks marker 6 whenever "SOUTH" is entered at
room 4.

The rule is:- If you want to place some conditions on the
player when he travels from one particular room to another, don't
put an entry in the room connection table - use the Action table
instead.

106

Test Adventure

Text Messages:-—

7010
7015
7020
7025
7030
7035
7040

7045
7050

7055
7060
7065
7070
7075

PRINT "THE DOOR IS SHUT FAST"

RETURN

PRINT "THE DOOR 1S OPEN"

RETURN

PRINT "IT IS ALREADY ALIGHT"

RETURN

PRINT "WITH A GRUNT YOU MANAGE TO",
"OPEN THE DOOR."

RETURN
PRINT "IT IS TOO STIFF FOR YOU",
"TO OPEN."
RETURN
PRINT "YOU DID IT. WELL DONE."
RETURN
PRINT "YOU CANNOT GET PAST THE DOOR."
RETURN

Room Descriptions:—

8010
8015
8020

8025
8030

8035
8040

8045
8050

8055
8060

8065

PRINT "YOU ARE STANDING BY A POTHOLE."

RETURN

PRINT "THIS IS A VAST CAVERN WITH",
"PASSAGES LEADING FAST,SOUTH,"
"AND WEST. A DIM PASSAGE SLOPES"
"UPWARDS BEHIND YOU."

RETURN

PRINT "THIS CAVE CONTAINS ONLY A POOL",
"OF QIL."

RETURN

PRINT "HERE IS A GIANT RUSTY DOOR."

RETURN

PRINT "YOU ARE IN THE WESTERN ALCOVE."

RETURN

PRINT "YOU ARE IN THE TREASURE CAVE."

RETURN

107

Test Adventure

Objects:—
Number of objects:— 5

No. Room number Description

1 1 A LAMP

2 0 A LIGHTED LAMP
3 5 A MING VASE

4 0 A VASE OF OIL
5 6 A BAR OF GOLD
Vocabulary:—

Number of words:- 25

Each entry below requires a maximum of six characters, the
first two being the word number.

01N 14DROP
0INORT 15VASE
02E 16GOLD
02EAST 17DOOR
035 180PEN
03s0uT 19LAMP
04w 20LIGH
04WEST 21FILL
050 2201IL
050P 23INVE
06D 24QUIT
06DOWN 25L00K
13TAKE

108

Test Adventure

Number of rooms:- 6

Room connection table (the numbers in brackets are for

reference only - do not enter them)

(1)
(2)
(3)
(4)
(5)
(6)

Number of conditionals:- 3

00

02030304040500
040200

010200
020200

010400

Conditionals (do not enter the spaces!) :-

A04 EO6. D02 N.

AQ4 FO6. DO1 N.

A0l DO5. 06 Q.

Number of keyword actions:— 21

Keyword actions:-

13
14
13
14
20

20

19 BO1.
19 BO1.
19 BOZ.
19 BO2.
00 DO1.

00 BOZ2.

BOl L.
C01 L.
B02 EO3 L.
C02 FO3 L.
HOl EO3 L.

D03 M.

(room 4 and marker 6 is set -
(i.e. the door is open.

(room 4 and M6 is not set ie
(the door is shut

(room 1 carrying object 5 -
(got out with the gold - win!

(take lamp - object 01

(drop lamp

(take (1it) lamp - object 02

(— also sets lamp marker 3
(drop lit lamp - unsets lamp

(marker 3

(light lamp - swaps objects 1
(and 2, also sets lamp mark 3
(light lamp and object 2 is

(already here - display 03

109

Test Adventure

06 00 A0l. E0Z K02 O.
05 00 A02. F02 K01 O.
13 15 BO3. BO3 L.
14 15 BO3. CO3 L.
13 16 B05. BO5 L.
14 16 B05. CO05 L.
21 00 BO3 AO03. HO3 L.
22 00 AO4 BO4. HO3 EO5 L.
18 00 A04 EO5. D04 EO06 M.
18 00 A04 FO5. DO5 M.
03 00 A04 FO6. DO7 M.
03 00 A04 E06. K06 O.
23 00 .A.
24 00 .P.
25 00 .0,
Testing your Adventures

(DOWN when at room 1, so set

{ "dark"™ marker 2, continue at

{ room number 2

(UP when at room 2, so unset

("dark" marker and continue

(at room number 1

(take vase

(drop vase

({take gold

{drop gold

(£ill vase - must have

(object 3 and be in room 3

(swaps objects 3 & 4

{0il door - must have object 4

(a full vase and be at room 4

("empties" bottle & set mark5
(open door — must be oiled i.e

(marker 5 must be set, and

{ must be at room 4. Sets Mé6.

{open door when not oiled.

(- displays message 5.

(SOUTH when marker 6 not set -

(i.e. door not open.

(SOUTH at door when open [mark

(6 is set]. Continues at room

(number 6.

(give inventory

(quit

(look to see where we are

What do you do if your new Adventure does not work? Here are
a few guidelines to help you track down any errors.

From my own experience, the most common problem occurs in
the Conditional and Action tables - either specifying incorrect
actions, or not entering appropriate items.

You can run the program in either slow or fast mode, but I

110

Testing Your Adventures

must point out that it can take quite a few seconds to scan the
Action table to match your keywords and so I would recommend fast

mode .

If nothing happens for one or two minutes, then suspect a
fault in the Conditional table. Press the BREAK key, and inspect
any of the following variables by using direct PRINT commands: -

Ccp

ES

Ps(1)

PS$(2)

ROOM

5(n)

C(n)

O(n)

Contains the current Conditional/Action table
entry number being processed.

indicates whether the Conditional or Action
table is being scanned. Zero means Action
table, 1 means Conditional table.

contains a copy of the Conditional/Action
table entry.

contains the keyword number of the first
keyword found in any input command.

contains the keyword number of the second
keyword found, or "00" if no second keyword
was entered.

the current room number.

switch n - 0O=off, l=on.

countdown n - O=countdown not in use.

room number containing object n. If the

object is being carried, this will have the

value -1. If the object does not exist, the
value will be zero.

111

Testing Your Adventures

The following arrays/variables are set up by the loader
program:—

MS () room connection table
R number of rooms

0 number of objects

Q() object location table, copied into O()
0s () object descriptions

v number of words

V$() vocabulary table

i number of conditionals
Cs$() conditional table

A number of actions

AS () action table

A common mistake is to terminate a Conditional table entry
with action code M instead of N. Action code M causes the
conditional table to be scanned again, and since the same
conditionals (probably) still exist, the same program will simply
loop indefinitely. Check that all conditionals finish with action
code N unless you have good reason to use another (look at the
tables in the "Test" Adventure).

For further information on Adventure, read the article by
Ken Reed, Practical Computing Vol. 3, Issue 8 (August 1980).

112

City Of Alzan
Suitable for : 16K RAM

Now for a complete
Adventure, based on the "Do-it-—
yourself" Adventure Master
program.

This takes place in a
fictitious city named Alzan,
which is built on top of the
sea cliffs and is inhabited by
thieves and cut-throats. Your
guest is to find a way out of
the city before they grab you,
or before the plague takes hold
of you. Unfortunately, the city
is surrounded by extremely high walls and so you must find a way
to scale them.

When you enter the game, it is possible for you to work out
how the game evolves and how to win, but this would defeat the
pleasure of playing, so try to "switch off" while you are typing.

When this program is fully running, you will have roughly
4150 bytes of memory free. This should give you a guide to the
size of Adventures you will be able to write. I would advise the
use of the "Memory Left" routine (see "Using Machine Code") while
developing your own games.

Tape name: "ALZAN"
Enter the text messages:-

7010 PRINT "OH DEAR. YOU MUST HAVE CAUGHT",
"THE PLAGUE IN THE TOMB. IT",
"SEEMS THAT YOU HAVE DIED."

7015 RETURN

7020 PRINT TAB 12;"-—-WHOOSH—-"

7022 PRINT "EL GRABBO, THE LOCAL THIEF,",
"SNATCHES YOUR MONEY AND DIS-",

113

7025
7030

7035
7040
7045
7050

7055
7060
7065
7070
7075
7080
7085
7090

7095
7100

7105
7110
L1,
7120
7125
7130

7135
7140
7145
7150

7155
7160
7165

8010

114

City of Alzan

"APPEARS INTO THE SEA MIST."

RETURN

PRINT "™™STOP THIEF®™®™ SHOUTS THE USHER,",
"BUT YOU MANAGE TO ESCAPE."

RETURN

PRINT "THE COVER IS ALRFEADY OPEN."

RETURN

PRINT "IT COSTS MORE THAN YOU CAN AFFORD."

RETURN

PRINT "THATLI. DO NICELY, SIR"

RETURN

PRINT "THE MANHOLE COVER IS OPEN."

RETURN

PRINT "THE MANHOLE COVER IS SHUT."

RETURN

PRINT "THE SHOPKEEPER IS BIGGER THAN",
"YoU..."

RETURN

PRINT "YOU WILL NEED A LADDER TO GET",
"OVER THESE WALLS."

RETURN

PRINT "IT IS ALREADY ON."

RETURN

PRINT "WHAT A STROKE OF GENIUS"

RETURN

PRINT "YOU CATCH THE GUARDS UNAWARE AND";
"MANAGE TO SNATCH A WAD OF NOTES.";
"NO-ONE HAS NOTICED (FUNNY LOT,",
"THESE ALZANS)"

RETURN

PRINT "YOU HAVE TAKEN ALL THERE IS."

RETURN

PRINT "I DONT SEE A TORCH?"

RETURN

PRINT "THE CINEMA IS BOOKED FOR A",
"PRIVATE FUNCTION."

RETURN

PRINT TAB §;"WELCOME TO ALZAN",,,

City of Alzan

"YOU MUST SCALE THE WALLS IF",
"YOU WISH TO ESCAPE FROM THIS",
"CITY OF THIEVES AND CUT-THROATS."

8015 RETURN

8020

8025
8030

8035
8040

8045
8050

8055
8060

8065
8070

8075
8080

8085
8090

8095
8100

8105

PRINT "YOU ARE IN THE MAIN STREET OUT-",
"SIDE A HARDWARE SHOP. THE STREET":
"STRETCHES FAST/WEST AND A SMALL",
"ALLEY LEADS NORTH BESIDE THE",
"SHOP. "

RETURN

PRINT "YOU ARE INSIDE THE SHOP. THE",
"SHOPKEEPER LOOKS SHIFTY, BUT HE",
"HAS MANY FINE GOODS ON DISPLAY."

RETURN

PRINT "YOU ARE IN AN ALLEY BEHIND THE",
"TALL BUILDINGS. THERE ARE MANY",
"FULL DUSTBINS UNDER THE FIRE",

" ESCAPE- n

RETURN

PRINT "YOU ARE ON THE FIRE ESCAPE,",
"WHICH LEADS PAST A DOOR IN THE",
"BUILDINGS."

RETURN

PRINT "YOU HAVE COME DOWN A SECRET",
"STAIRCASE INTO THE SHOP."

RETURN

PRINT "YOU ARE ON SOME CATWALKS BETWEEN";
"THE BUILDINGS."

RETURN

PRINT "THIS IS PART OF THE CITY WALLS.",
"THERE IS AN UNUSED DOOR IN THE",
"WALL HERE."

RETURN

PRINT "YOU ARE AT A CROSSROADS."

RETURN

PRINT "HERE IS PART OF THE CITY WALLS.",
"THE SEA MIST IS QUITE THICK,",
"MAKING IT HARD TO SEE FAR."

RETURN

115

City of Alzan

8110 PRINT "YOU PLUNGE FROM THE WALL — RIGH e
"DOWN ONTO THE ROCKS BY THE SEA",
"S500FT BELOW. WELL, NEVER MIND,",
"BETTER LUCK NEXT TIME."

8115 RETURN

8120 PRINT "yOU ARE OUTSIDE THE TOWN BANK."

8125 RETURN

8130 PRINT PRINT "INSIDE THE BANK THERE ARE MANY",
"GUARDS WHO SEEM RATHER BORED."

8135 RETURN

8140 PRINT "YOU HAVE ARRIVED AT A DEAD END, "
"BUT THE:RE 1S A MANHOLE IN THE",
"ROAD. ..

8145 RETURN

8150 PRINT "YOU ARE IN A SMALL ALCOVE UNDER-";
"NEATH THE MANHOLE. A PASSA
"LEADS SOUTH."

8155 RETURN

8160 PRINT "THE PASSAGE LEADS TO AN ANCIENT",
"TOMB, WHERE MANY SARCOPHAGI LIE",
"SCATTERED ABOUT."

8165 RETURN

8170 PRINT "THE USHER WILL NOT LET YOU IN AsS";
"THE PROGRAMME HAS STARTED. HE",
"BIOCKS YOUR PATH WITH HIS TORCH."

8175 RETURN

8180 PRINT "YOU ARE OUTSIDE THE CINEMA.",
"SOUNDS OF GUNFIRE COME FROM",
"WITHIN."

8185 RETURN

8190 PRINT TAB 8;"***OONGRATULATIONS***",
"YOU MADE IT OUTSIDE THE CITY",
"ALLS, THIS IS INDEED A RARE",
"OCCASION. WELL DONE."

8195 RETURN

Now type RUN 9000 to start the initialisation routine. The

arrays should be set as follows:-

116

City of Alzan

Number of objects : 11

Object room

Description

0

= O R OO oWwwo
(=) 8]

A LIGHTED TORCH
A TORCH

A LADDER

A HAMMER

A HAMMER

A WAD OF NOTES
MANHOLE COVER
A BAG OF NAILS
A BARCLAYCARD
A ROUGH LADDER
SOME WOOD

Number of words : 43

01N
01NCRT
02E
02EAST
03s
03s00UT
04w
04WEST
050
050pP
06D
06DCWN
13TAKE
14pUT
14DROP
15ENTE
15IN
leOUT
16EXIT
16LEAV
17TORC
18LADD

198AMM
20WAD

20NOTE
22BAG

22NAIL
23BARC
05SCAL
05CLIM
290PEN
29LIFT
30MAKE
30BUIL
31SWIT
31LIGH
32BUY

33WO0D
34ROB

345TEA
35INVE

36QUIT
37LOOK

117

City of Alzan

Number of rooms : 19

Room no Connections

1 00

2 01 04 02 09 04 18 00
3 00

4 02 02 05 05 00

5 06 04 04 07 00

6 00

7 01 08 03 05 00

8 03 07 00

9 01 12 02 10 03 14 04 02 00
10 04 09 00

11 00

12 02 09 04 18 00

13 00

14 01 09 00

45 03 16 00

16 01 15 00

17 00

18 01 12 02 02 00

19 00

Number of conditionals : 9

conditional table (the spaces are only to make it easier to
read - do not enter them) :-—

A0l. K02 O.

Al6 H30. GO121.
GOl. DOl Q.

B06 H10. D02 JO06.
Al4 E07. DO7 N.
Al4 FO7. DO8 N.
All. Q.

alg. Q.

A06. KO3 O.

118

City of Alzan

Number of actions : 47

Action table (the spaces are to make it easier to read - do
not enter them)

13
13
32
13
13
29
29
3
3
14
14

14
14
14
14
05
05
05
05
05
06
31
31
32
32
30
13
14
15
15
15
16
16
16

17
17
18
19
20
00
00
22
23
17
17
19
20
22
23
0o
00
00
00
00
00
00
00
19
19
00
33
33
00
00
00
00
00
00

BOl. BOl

EO3

Al7 CO1 Coz.

BO3. D05
BO5. B05
B06. BO6
Al4 EQ7.
Al4. EO07
BO8. BO8
B09. BO9
BOl. C01
B02. C02
B05. CO05
B06. CO06
B08. C08
B09. C09
Al0 Cl10.
408 Cl0.
Al0. K11
A08. K19
Al5. FO2
Al4. EO2
DO2. HO1
BOl. D11
B04 BO6.
B04 BO9.

N.
L.
L.

O.
Q.
K14
K15
E03
N.
HO4
HO4

BO5 B11 BOS.

Bll. Bll
Bl1l. Cl11
AQ2. KO3
Al2. K13
Al8 F10.
AD3. K02
Al3. K12
Al7. K18

L.
L.
O.
a.
K17

a.
a.

0.

L.
102 BO2 DO3 K18 E10 O.

0.
0.
L.

J0é BO5 L.
D06 BOS M.

D12 110 J08 J11 M.

119

15
34
34
34
15
13
14
13
13
35
36
3.
50

00
00
00
00
00
18
18
18
17
00
00
00
00

A05. K06
A03. D09
4l3 EO08.
A13. E08
Al8 E10.
B10. Bl10O
B10. C10
B03. D09
B02. BO2
A,
.P.
.0.
.N.

City of Alzan

o.

M.

D14 M.

D13 I06 BO6
D16 M.

L.

L.

M.

L.

Now use the "save" routine
adventure. When you next load the program, it will automatically
start running, but if you wish to begin again for any reason, use
GOTO 1, as the Bgﬁ_command will clear all variables thus des-
troying the game.

Have fun!

120

M.

giving the name ALZAN to this

72X80 TO ZX81 CONVERSION

There must be literally thousands of programs written for
the original 4K ROM 2X80 which can no longer be directly used on
the ZX81 (or even the ZX80 with 8K ROM) .

This brief appendix gives you a minimal idea of how to
convert a program written for the 4K ROM ZX80.

7z

All array subscripts for the 2ZX80 could start at zero,
whereas the ZX81 must start at 1. Any program which
uses the "zero subscript" must be altered to start at
1. One quick method (not always guaranteed) is to add
one to each subscript value that you see used in the
program,

The ZX80 made use of a special string function TLS,
which supplied the following string expression with
first character removed. This can be replaced by using
the qualifier (2 TO) following the string variable
name. For example:-

LET AS=TLS (XS)
-« .will now become...

LET A$=XS$S(2 TO)

The RND function worked in a different fashion - the
argument specified the maximum limit of random number
value, so that RND(100) gave a random number between 1
and 100. This can be altered as follows:-

LET N=RND (X)
++.should now be written...

LET N=INT (RND*X)+1

All arithmetic involved integer values only, and div-
ision results were always rounded down. Unless there is

121

Appendix A

good reason, alter all divisions to use the INT func-
tion on the result.

5. The comma delimiter in PRINT statements moved the print
position across to the next quarter of the screen
instead of half-way across. You must study the program
carefully, but the TAB function may help to move across
to the next position. Print zones were placed at
positions corresponding to:-

TAB 8, TAB 16, TAB 24 and TAB 0 (beginning of line).

6. Programs which used PEEK and POKE cannot readily be
converted - you must know what effect the commands are
having upon the program, and it would take too much
space here to include a list of the system variables of
the old ZX80.

7. Some of the character code values have altered -
particularly the graphic characters - and so you should
also be wary of any program which makes liberal use of
the CODE function. The code values that have remained
constant are those in the range 12-17, 25-63, 140-145
and 153-191. Other assorted values have remained
constant, but the main point is that the characters 0-9
and A-7 stay as they were.

8. A FOR/NEXT loop was always executed at least once. This
may no longer be true, since if the "finish" value is
already exceeded, the loop is now totally by-passed.
Most likely this will not present any problems, but
keep an eye open for loops which use variable names as
the control and limit values.

Apart from that, you shouldn't have too many problems! The

best option, really, is to understand the program (1f it's not
yours) and then re-write it properly. It'll work that much
better.

122

Z2X81 MODULE SELECTOR

This appendix lists the assembler module used in Section 7

"Using Machine Code". The addresses are all relative to the
module base page address.

4004
4007
400C
4010
401C
4078

0005

0000

0ooo!

System variables

w8 ma mE wme wa

ramtop equ
pPpe equ
dfile equ
vars equ
stkend equ

spare equ

r
maxfunc equ
i

cseg

I

entrySpoint:

On entry to a USR subroutine, registers BC
contain the address of the routine. This
is used throughout as the basis for all
Jjumps & calls, effectively confining the
routine to one page. Your RAMTOP must be
set to a page boundary (i.e. a multiple of
256). Register H is set to this page
number, and should not be altered,

e mE mE e ma ma ws wa

16388
16391
16396
16400
16412
16507

ZX81 Module selector

itop of memory pointer
jcurrent line number
;pointer to display file
;pointer to variables
;pointer to spare memory
junused system variable

;humber of routine functions

123

0oo0'
0003"'
0005"
0006"
0007"'
0009
oooc!
0ooD'
000E'
000F'

o010’

0010"'
0011'
0o12"
0013'
0014"

0015"'

0015'
0018’
0019°'
001D*
001F'
0020"
0021"

124

Appendix B

The system variable "SPARE" low-order byte
is taken as the function call number.

.

3A 407B 1d a,(spare) ;load function number

FE 05 cp maxfuncs ;is it a valid function?

DO ret nc sreturn if invalid.

5F 1d e,a ;:create 16-bit offset

16 00 1d d,o0

21 0010' 1d hl,func$table ;address of vectors

60 1d h,b ;set page number

19 add hl,de ;add in routine offset

6E 1d 1,(hl) ;get address offset

E9 jp {hl) ;jump to function
funcStable:

15
22
27
2C
24

21
39
ED
ED
44

4D
Cc9

An entry value of zero in "SPARE"

causes a jump to the first entry in this
table. Each single-byte entry is the
offset value of the routine address from
the start of the module.

T TR T T

defb (funcO-entry$point) and 0ffh
defb (funcl-entry$point) and O0ffh
defb (Func2-entry$point) and Offh
defb (func3-entry$point) and 0ffh
defb (funcd-entry$point) and Offh
func0O:
I Give estimate of available memory
0000 14 hl,0 ;clear HL
add hl,sp ;obtain stack pointer
5B 401C 1d de, (stkend) ;end of system memory
52 sbec hl,de ;get the difference
1d b,h ;put answer into BC
1d c,l
ret :return to BASIC

0022'

ooz22'
0026'

0027

0027'
0ozB!'

ooz2C’'
gozc!
00z2F"
0030°'

0031"

0031
0035"

003"

Appendix B

funcl:

H Give address of display file
ED 4B 400C 1da bc, (dfile) ;load system variable
C9 ret sback to BASIC

func2:

: Give address of BASIC variables
ED 4B 4010 1d bc, (vars) ;load contents of VARS
C9 ret

func3:

i Give address of some spare memory

: (beyond this routine)
01 0036 1d bc,program$limit-entry$point
44 14 b,h
C9 ret

funcd:

; Give current line number
ED 4B 4007 14 be, (ppc) ;load from PPC sys. var.
c9 ret

program$limit equ $;limit of memory

end

One final answer - the question was posed in the text with

the "Silly Quiz" game. How can you answer each question correctly
without even seeing the question?

Whenever a question is posed, the answer has already been

set up in variable W$. By rubbing out the quotes and entering W$
as the solution, you will effectively enter the correct answer!
Who needs questions anyway?

125

BASIC COMMAND SUMMARY

Name
ABS (n)
ACS(n)
AND
ASN(n)
AT y,X
ATN (n)
CHRS (n)
CLEAR
CLS
CODE (s)
CONT
COPY
COS (n)
DIM

EXP (n)
FAST
FOR
GOSUB n
GOTO n
IF e THEN
INKEYS
INPUT
INT (n)
LEN(s)
LET
LIST
LLIST
[N(n)
LOAD

126

Meaning

Give modulus value of n

Arccos value of n in radians

Logical operator

Arcsin value of n in radians

Forces print position to line y, column x
Arctangent of n in radians

Gives character corresponding to code value n
Deletes all variables

Clears screen and sets print position to top left
Gives code value of first character in string s
Resumes program execution after a report code
Copies screen content on ZX printer

Gives cosine value of n in radians

Dimensions an array (numeric or string)
Supplies value of e (natural anti-log)

Places ZXB8l1 into fast (or ZX80) mode

Introduces control variable of a program loop
Obey subroutine at line n

Transfer program execution to line n

Obeys THEN clause if expression e is true
Supplies character waiting at keyboard (if any)
Inputs numeric or string expression from keyboard
Supplies next lower integer value of n

Gives length of following string expression
Assigns variables

Displays program text on screen

Displays program text on ZX printer

Supplies value of logg(n) (natural logar ithm)
Loads named program from cassette

LPRINT
NEW
NEXT
NOT (n)
OR
PAUSE
PEEK (n)
PI
PLOT
PRINT
RAND
REM
RETURN
RND
RON
SAVE
SCROLL
SGN (n)
SIN(n)
SLOW
SQR(n)
STEP n
STOP
STRS (n)
TAB (n)
TAN (n)
UNPLOT
USR(n)
VAL (s)

Appendix C

Prints following expressions on ZX printer
Clears ZX81 completely

Updates control variable to its next step value
Inverts truth value of expression n

Logical operator

Suspends execution for n/50 secs

Gives value of byte at address n

Gives value of 3.1415926

Blacks in pixel at screen coordinate X, ¥

Places following expressions into display file
Sets random number seed

Allows REMarks in program source

Terminates a subroutine

Supplies value of a random number 0<=n<l

Clears variables and commences program execution
Saves a program on tape under a name

Shifts display up one line

Supplies "sign" value of n (-1,0 or +1)

Gives sine value of n in radians

Places 7X¥81 in "compute-and-display" mode

Gives square root value of n

Alters step value of FOR loop to n

Suspends program execution, giving error report 9
Gives string equivalent of numeric expression n
Moves print position to column n

Gives tangent value of n in radians

Whitens the pixel at screen coordinate X,y

Calls machin code routine at memory address n
Gives numeric equivalent of string s (if possible)

Useful information:

CODE "@" - 28

CODE "A" - 38
FRAMES — 16436/7 VARS 16400/1
RAMTOP 16388/9 DFILE 16396/7

Program starts at 16509

127

ERROR CODES

128

Error code

Meaning

Successful completion of program.

Control variable does not exist.
Undefined variable name.

Subscript out of range.

Not enough memory.

Screen display file full.

Arithmetic overflow.

RETURN found with no GOSUB.

INPUT used in direct mode.

STOP command executed.

Invalid function argument (e.g. SQR -1)
Integer out of range (PRINT AT,PLOT,etc.)
VAL argument is not a numeric expression.
Program interrupted (BREAK or STOP in INPUT)
Unused.

No name given to SAVE command.

The ZX-81 computer from Sinclair Research, Ltd., is an ex-
citing breakthrough in personal computing. About the size of
this book, it uses your television set for display and any
Cassette recorder to save programs. Though it can be used for
games; for home recordkeeping, and for business functions, it
is not “for’” any of these uses. Because it is the least expensive,
complete, powerful computer on the market, it is an ideal
“first computer,” to introduce adults and children to the world
of computing.

The ZX-81 Pocket Book contains programs ready to run,
as well as programming hints to help you create your own
programs. The ZX-81 Pocket Book also includes an in-
troduction to machine code, has a complete.adventure game
entitled *‘City of Alzan” and guides for you to create your own
adventure games.

Other books from Reston on the ZX-81 computer:

Making the Most of Your ZX-81
by Tim Hartnell

49 Explosive Games For Your ZX-81
by Tim Hartnell

Mastering Machine Code With Your ZX-81
by Toni Baker '

Information about the ZX-81 can be obtained from the National ZX Users
Group, 599 Adamsdale Rd., N. Attleboro, Mass. 02760

cover design by: Jayce Thompson

RESTON PUBLISHING COMPANY, INC. 0-8359-9524-0
A Prentice-Hall Company
Reston, Virginia

	Scan0000.pdf
	Scan0001.pdf
	Scan0002.pdf
	Scan0003.pdf
	Scan0004.pdf
	Scan0005.pdf
	Scan0006.pdf
	Scan0007.pdf
	Scan0008.pdf
	Scan0009.pdf
	Scan0010.pdf
	Scan0011.pdf
	Scan0012.pdf
	Scan0013.pdf
	Scan0014.pdf
	Scan0015.pdf
	Scan0016.pdf
	Scan0017.pdf
	Scan0018.pdf
	Scan0019.pdf
	Scan0020.pdf
	Scan0021.pdf
	Scan0022.pdf
	Scan0023.pdf
	Scan0024.pdf
	Scan0025.pdf
	Scan0026.pdf
	Scan0027.pdf
	Scan0028.pdf
	Scan0029.pdf
	Scan0030.pdf
	Scan0031.pdf
	Scan0032.pdf
	Scan0033.pdf
	Scan0034.pdf
	Scan0035.pdf
	Scan0036.pdf
	Scan0037.pdf
	Scan0038.pdf
	Scan0039.pdf
	Scan0040.pdf
	Scan0041.pdf
	Scan0042.pdf
	Scan0043.pdf
	Scan0044.pdf
	Scan0045.pdf
	Scan0046.pdf
	Scan0047.pdf
	Scan0048.pdf
	Scan0049.pdf
	Scan0050.pdf
	Scan0051.pdf
	Scan0052.pdf
	Scan0053.pdf
	Scan0054.pdf
	Scan0055.pdf
	Scan0056.pdf
	Scan0057.pdf
	Scan0058.pdf
	Scan0059.pdf
	Scan0060.pdf
	Scan0061.pdf
	Scan0062.pdf
	Scan0063.pdf
	Scan0064.pdf
	Scan0065.pdf
	Scan0066.pdf
	Scan0067.pdf
	Scan0068.pdf
	Scan0069.pdf
	Scan0070.pdf
	Scan0071.pdf
	Scan0072.pdf
	Scan0073.pdf
	Scan0074.pdf
	Scan0075.pdf
	Scan0076.pdf
	Scan0077.pdf
	Scan0078.pdf
	Scan0079.pdf
	Scan0080.pdf
	Scan0081.pdf
	Scan0082.pdf
	Scan0083.pdf
	Scan0084.pdf
	Scan0085.pdf
	Scan0086.pdf
	Scan0087.pdf
	Scan0088.pdf
	Scan0089.pdf
	Scan0090.pdf
	Scan0091.pdf
	Scan0092.pdf
	Scan0093.pdf
	Scan0094.pdf
	Scan0095.pdf
	Scan0096.pdf
	Scan0097.pdf
	Scan0098.pdf
	Scan0099.pdf
	Scan0100.pdf
	Scan0101.pdf
	Scan0102.pdf
	Scan0103.pdf
	Scan0104.pdf
	Scan0105.pdf
	Scan0106.pdf
	Scan0107.pdf
	Scan0108.pdf
	Scan0109.pdf
	Scan0110.pdf
	Scan0111.pdf
	Scan0112.pdf
	Scan0113.pdf
	Scan0114.pdf
	Scan0115.pdf
	Scan0116.pdf
	Scan0117.pdf
	Scan0118.pdf
	Scan0119.pdf
	Scan0120.pdf
	Scan0121.pdf
	Scan0122.pdf
	Scan0123.pdf
	Scan0124.pdf
	Scan0125.pdf
	Scan0126.pdf
	Scan0127.pdf
	Scan0128.pdf
	Scan0129.pdf

