

ATARI 130XE MACHINE
LANGUAGE FOR THE
ABSOLUTE BEGINNER

Kevin Bergin

_ . .,,-_l_j_ .. ~~
MELBOURNE HOUSE

PUBLISHERS

© 1985 Beam Software

All rights reserved. This book is copyright and no part may
be copied or stored by electromagnetic, electronic,
photographic, mechanical or any other means whatsoever
except as provided by national law. All enquiries shou ld be
addressed to the publishers:

IN THE UNITED KINGDOM -
Melbourne House (Publishers) Ltd
Castle Yard House
Castle Yard
Richmond, TW10 6TF

IN AUSTRALIA -
Melbourne House (Australia) Pty Ltd
2nd Floor, 70 Park Street
South Melbourne, Victoria 3205

ISBN 0 86161 200 0

Edited by Richard Woolcock

Printed and bound in Great Britain by Short Run Press Ltd , Exeter

Ed,tlon: 7 6 5 4 3 2 I
Prinl ing: FED C B A 9 8 7 6 5 4 3 2 I
Year: 9089 88 87 86 85

Contents

Chapter 1 - Introduction to Machine Language
Using a machine language program .
Memory addressing .
Using memory directly from BASIC
Machine language as a subroutine
Summary

Chapter 2 - Basics of Machine Language Programming .
Using memory from machine language
The reg isters .
The accumulator
Addressing modes
Simple program input
Assembly language
Screen memory
Printing a message
Summary

Chapter 3 - An Introduction to Hexadecimal
Uses of Hexadecimal .
Binary .
Why hexadecimal?
Hex and Binary maihematicall y
Absolute addressing
Converting hexadecimal to decimal .
Summary

Chapter 4 - Introduction to ALPA + Disassembler .
To get ALPA running .
Using ALPA
ALPA commands
Memory Usage in ALPA
Summary

Chapter 5 - Microprocessor Equipment
Storing numbers
The carry flag
Adding numbers
Two byte addition
Subtracting numbers .

1
2
2
3
3
5

7
7
7
7
8

10
11
12
14
16

19
19
20
22
23
24
25
26

29
31
31
32
33
35

37
37
37
39
41
45

An exercise .
Summary

Chapter 6 - Program Control .
Player Missile Graphics .
Moving Player-Mi ss ile Graphics .
Looping using JMP
ALP A label name addressing
Infinite loops
Comparing numbers
Branch instructions
Zero Flag .
Relative addressing
Summary

Chapter 7 - Looping and Pointing .
Counting to control a loop
Counting using the accumulator
Counting using memory
The X and Y registers
Using the X register as a counter .
Moving blocks of memory .
Implied addressing
Relati ve addressing .
Absolute addressing
Indexed addressing .
Using the X register as an index .
Non-symmetry of commands
Searching through memory .
Using more than one Index
Zero page indexed addressing
Summary

Chapter 8 - Using Information Stored in Tables
Displaying characters as graphics .
Graphics memory
Copying the character sets from ROM .
Indirect indexed addressing .
Register transfer instructions .
Indirect addressing
Summary

Chapter 9 - Processor Status Codes .
BCD representation .
Summary

Chapter 10 - Logical Operators and Bit Manipulators
Changing bits within memory
The logical AND
The logical OR .
The logical Exclusi ve OR .

45
46

47
47
48
48
49
50
51
52
52
55
56

59
59
59
60
61
62
63
64
64
64
64
64
65
65
68
68
69

.... 71
71
72
73

. 74
76
77
78

. 81
82
85

87
87
88
89
90

The bit instruction
Rotating Bits within a byte
Rotation with carry
Rotating to the right
Clever multiplication
Summary

Chapter 11 - Details of Program Control .
The Program Counter
Storing into the Program counter
The Program counter and subroutines
The stack control structure
Subroutines and the Stack .
The Stack and interrupts
Summary

Chapter 12 - Dealing with the Operating System
The Kernal
CLI
RTI
Summary

Appendices

Appendix 1 - 6502 Instruction Codes .
Appendix 2 - Hexadecimal to Decimal Conversion Table
Appendix 3- Relative Branch and Two's Complement Numbering Tables
Appendix 4 - Atari 130XE Memory Map
Appendix 5 - The Screen Chip
Appendix 6 - The Sound Chip
Appendix 7 - Memory Usage Directory
Appendix 8 - Table of Screen Codes
Appendix 9 - Current Key Pressed .
Appendix 10 - ALPA and Disassembler

Index

91
91
93
94
95
98

99
99

100
100
101
102
106
107

104
104
110
11 0
112

11 3
121
123
124
125
130
133
136
138
139
153

Forevvord

So, you f ee l you ' ve had e nou gh of BASIC and want to l earn more
about yo ur machi n e .

Maybe yo u us e yo ur computer to run some professiona ll y writ t en
software, like word processing, accounting systems, educational
software or games .

You may have wonde r ed what it is that makes these programs so
different from the ones you have written in BASIC . These
p rofessiona l programs seem to be ab l e to do many tasks at the
same time, inc luding functions which you may have not realised
that your computer can do .

Apart fr om the size of the programs and the amou nt of time
spent in writi ng th e m, the one major difference between yo ur
p rogra ms a nd mos t of the programs t hat you wi ll buy in a store,
is that most profession a l programs are written wholly or partly
in machine language.

Machine language is a must for t he real l y serious programmer.
Most games, useful utilities and interfaces are written i n
machine l a nguage .

This book attempts to give you an introd uction to the world of
machine l a nguage, th e ot her side of your 130xE.

You wi ll be l ed thr ough t he microp r ocessor ' s instruction se t
s lowl y at first, practis ing eac h instuctio n learned using the
monitor/program e ntry program ALPA (Assemb l y Language
Programming Aid) .

As we work through the instruction set you wi l l meet t he new
concepts and feat ures of your comput er, some of whi ch yo u may
not have known it pos sesse d.

You are encouraged throug hout the book to check that the
computer ' s output is what you wo uld l ogica l ly ex pect it to be .
Keep a pe n and pap er close at hand LO copy on paper what the
microprocessor i s doin g , to get its answers, and to see if your
a nswers agree .

Chapter 1
Introduction to Machine Language

One advantage of machine l ang uage (M.L .) is that it al l ows th e
programme r to pe rform severa l fun c tions not s uit e d to BAS I C.
Th e mo st remarka ble advantage of machine language, however, is
its speed . On t he 130XE you can carry o u t approxima t e l y one
hundred tho usand M.L instruction s pe r second . BASIC commands
are seve ral hundred times s l ower.

This is due to the fact that BAS I C is wri tt en in
language and one s ing l e BASIC command may b e a machine
program of hundreds of in structions . This is ref l ecte d
capabi lities of each of the l a nguages .

machin e
language
in th e

Machine language instructions, as yo u wil l s ee as you work your
way throug h thi s book, are ex tr e me ly limited in what t hey can
do. They perform onl y minut e tasks and it takes many of th em
to achi eve any 'us eful' functio n. They p e r form tasks related
t o the ac tual ma c hine ry of t h e computer . They tell th e
computer to remember some numbers a nd forge t others, to see if
a k e y o n t h e k eyboard is pre ssed, to r ea d a nd wr it e data to th e
cassette tape a nd to print a c ha r acter on th e screen.

Machine l a nguage programs ca n b e t hought of as subro ut ines
l ike a subroutine in BASI C - a program with i n a n o th e r program
that can b e used anywh e r e in th e program a nd ret urns to where
it was called from when finished. Yo u use th e comma nd s COSUB
and RETURN to exe cut e and th e n return from a subroutine.

10 COSUB 8000

8000 RETURN

1

This wou ldn't be a very useful subroutine because it doesn't do
anything but it do es show how a subroutine works !

Using a machine language program
To ca ll a machine l anguage subroutine from a BASIC program yo u
use the command ' A=USR (address)' where A i s a dummy variable .
Just as with the COSUB comma nd you must tel l the c omputer where
your routine starts. ' COSUB 8000' ca ll s the subroutine a t line
number 8000 . Simi l ar l y A=USR (8000) calls the machine language
subroutine at memory address 8000.

NOTE here that memory a ddress 8000 i s very different to line
number 8000. A memory address is not a program line number, it
is the 'address ' of a n ac tual piece of memory in the computer .

Memory addressing
Each pi e ce of memory in the computer can be visua li sed as a box
which ca n contains one character, one pi ece of information .

With over 65,000 separate boxes, the computer must have a
filing system to keep track of them, so that it ca n find each
separate piece of information when it needs it. The filing
system it uses gives each box a n 'address', which is like the
address of your hou se . You use addresses to fi nd the dne
particular hous e you are l ooking for anywhere within a busy
city. You use this address to visit a house, send it mail or
to pick up a parcel from it. The computer, like us, sends
information and moves from one pla ce (subroutine) to anothe r
using its system of addresses .

The comput e r's system of addressing is simp l er than ours in
its terms, anyway - as it starts at one e nd of memory a nd ca lls
this address zero. It t hen co unts throug h the memory 'boxes ~,

giving each of them a number as it goes - from zero at one end
to 65535 right at the other e nd of memory. For us this would
be very diffi cult to remember, but for the computer it is the
logical way to do things. These number e d boxes can be thought
of as post office boxes . If you put somet hing in the box at
address number one, it wi ll stay th ere until you replace it
wit h something else.

Each box can hold on l y one
some thing in a box, what
for eve r.

thing at a
was originally

time.
there

When
wi 11

The command ' A=USR (8000) ' tel l s th e BASIC to execute a
l ang uage subroutine whose first instruction is stored
box at address 8000 .

2

you
be

put
lost

machine
in the

Using memory directly from BASIC
There are two other BASIC comma nd s th a t yo u wil l find ex tremely
u sefu l in this work.

They e nable u s to put things in and co ll ect things from the
boxes in memory. These commands are ' PEEK ' AND 'POKE '. PRINT
PEE K (500) picks up t h e contents of the box at memory address
500 and pr ints it. This ca n b e used like any oth e r function
within a BAS I C program, e .g. A PEEK (387) or C 7*PEEK
107 8)+ 14.

POKE 1100,27 puts t he number afte r th e comma, i n this
into t h e box at memory ad dress 1100, e . g . POKE 2179,B
C,X . Try th e fo ll owing:

PRINT PEEK (8000)
POKE 8000,200
PRINT PEEK (8000)

case
or

27,
POKE

We wi ll be using th ese BASIC comman d s a l ot whil e experime nt ing
with machine l anguage instructions so that we can find out the
r esu lt of the programs we write a nd us e . BASIC wi ll be a tool
by wh ich we write, run and observe our machi n e l a n6 uage
programs.

Machine language as a subroutine
We have said that our mach ine language programs will
l ike a subroutine in BASIC . I n p l ace of th e ' COS UB'
use the 'USR ' comma nd.

be us ed
we wi II

In BASIC, as you kn ow, a subrout ine mu s t e nd wi th the command
RETURN .

10 COSUB 8000

8040 RETURN

3

So too our machine language routines must end wit h a command to
RETURN to the main program but it will not be a BASIC command
it will be a machine language instruction.

The machine language instruction for RETURN is 96. That's it,
just 96. 96 is what the microprocessor understands as a
command to RETURN from a s ubr outine . It would of course be
impossible for us to remember that 96 is return as well as the
list of hundreds of other instructions, so we have names for
eac h instruction. The se name s are meaningl ess to the computer
but, hopefully make some sense to us, the programmers. These
names are short simple and to th e point, they are called
Mnemonics.

One important note here , the USR comma nd allows the user to
pass to a machine language program info rmation through
parameters. For our purposes we will be passing no parameters.
However the 130xE a l ways ass um es that you are passing at least
one parame ter and saves the number of parameters in a place
ca lled the stack. In our case the number wi ll be zero. This
number must be removed from the stack before your machine
language program tries to return to BASIC or it will crash the
machine. To do this put at the start of yo ur program a PLA,
it is 104 in decima l. If this is impractical then
alternatively this instruct ion can be the second last
instruction executed (before the RTS). It is simplest however
to make it th e first.

Th e mnemonic for 96 is RTS. RTS stands for RETURN from
Subroutine. The mnemoni c for 104 i s PLA which stands for Pull
accumulator. Where ne cessary throughout we will provide both
the machine code numbers and the mnemonics of an instruction,
as this mak e s it readable to you while at the same time
providing the information needed for the comp ut er .

To demonstrat e how this works we
machine language program. Type in

POKE 8192,104

POKE 8193,96

will create a very short
the following BASIC lines:

This puts 104 (the value of PLA instruction) into the memory
address of location 8192 and 96 (the value of the RTS
instruction) into th e box at memory address of location 8193.

Congratulations! You have just
language program . It doesn't do
empty BAS IC subroutine :

4

created
much; it

yo ur
is

first machine
just like the

10 COSUB 8000
8000 RETURN

Sitting
(RTS).
program

line:

in the box at memory address 8193
We wi ll now run (just to check
using the command 'USR' . Type in

is the instruction 96
that it wo rks) our
th e following BASIC

A=USR (8192)

The computer should respond with READY. It has just executed
yo ur program.

Chapter 1 SUMMARY
1. Assembly code is fast. It allows access to the
inbuilt hardware functions that are not convenient to
BAS IC.

computer's
use from

2. Ins tructions only perform very simpl e tasks
requires a l arge number of them to do anything
However eac h instruction executes very quickly

and so it
complicated.

3 . Memory is addre ssed using numbers from 0 to 65535.

4. A memory address can be thought of as a post office box,
which can only hold one piece of information at a time.

5 . PEEK is used to examine the con t ents of a me mory locatio n
from BASIC.

6 . POKE is used to put a number into a memor y location from
BASIC .

7 . USR is used to run a machine language from BASIC .

8. A machine l anguag e program cal l e d from BASIC must include
at least one PLA as the first executab l e instruction or the
second la st executable instruction . Please note the difference
between the first instruction in a program and the first
instruction which is actual l y executed . They are not the same
thing.

9. The value 96 (RTS) must be placed at t h e
machine l ang uage program to tell the comp ut er to
subrouti n e .

5

en d of
'RETURN '

every
fro m

6

Chapter 2
Basics of Machine Language
Programming

Using memory from machine
language
So far we have discussed memory, discussed how you can look at
things in memory from BASIC, and how to put things in memory
from BASIC.

This of course has to be done within our machine language
programs as well. We need to be a bl e to pick up some
information from one of the boxes in memory, perform operations
on it and then return it to the same, or to a different, box in
memory. To do this, the microproc essor has devices called
registers. Th ese ca n be thought of as hands which the
microprocessor uses to get things done.

The registers
There are three of these hands (registers) called A,X a nd Y,
each of which is suited to a particul ar range of tasks in the
same way that a right handed person us es their right hand to
play tennis, their l eEt hand to throw the ball in the air and
to serve, and when needed both hands, e.g . to tie their shoes.

These hands (registers) can pick up information from the memory
boxes. Like memory they can only hold one piece of information
at a time, but they are not themselves a part of the memory as
they have no address. They are an actual part of the
microprocessor and t here are special machine l a nguage
instructions which deal with eac h of them seperately.

The accumulator
The first register we will talk about is the 'A'
accumulator). As you will see in the following
accumulator's functions are the most ge nera l of
hands. It is also the register whi ch handles
microprocessor's mathematical functions.

7

register (or
chapters, the

the computer's
most of the

In most cases , the
information in on e of
anythi ng with it.

microprocessor must be holding some
its hands (registers) before it can do
To get the microprocessor to pick up

somet hing from one of th e boxes in memory, using the
acc umul ator, you us e the instruction ' LOA'. This mnemonic
stands for lo ad accumulator. This loads the contents of one of
the boxes in memory in to the microprocessor's acc umulator hand,
e.g .

LOA 253

This command takes the co nt e nt s of the box at memory address
253 and puts it in the microprocessor 's ' A' hand
(accumul ator) . The machine code values of this instruction is
165 253.

NOTE here that the machine code is in two parts . Un like the
command RTS which i s in one part, - 96 -, th e LOA 253 has one
part for th e command LOA, - 165 - , and one part for the address
of t he box in memory which contains t he information being
picked up, - 253 -. These two parts of the instruction are put
in seperate memory boxes so the boxes containing the program;

ILOA 38 1
RTS

Would look like:

Addressing modes

Most mac hine l anguage instructions have several different forms
or modes, whi c h a ll ow t he progra mmer fl ex ibility in how and
where in memory the data will be put for t he program to operate
on . There are eight different forms for LOA a l one , called
Addressing Modes .

In vario us different ways, these addressing modes a lt er the way
in which the address of the box in memory to be used is
specified withi n th e in str uctio n.

For example, ass ume you had a n instruction to take a letter out
of a certain post office box. Your instructio ns co uld tell you
to do this in several different ways:

8

1. You cou ld be told to l ook for box number 17.

2. You could be to ld to look for the bo x third from the right
on the second bottom row.

3. You could be told to look for t he box owned by Mr. Smith.

4 . You could be told to look for the box whose address was
contained in a different box.

5. You cou ld be simply handed the letter.

You will find out more about addressi ng modes later in the
book, but for now you will be introduced to three of tD£ e ight
different forms of the LOA command.

Mode 1 - 165 253 LOA 253

This is a short form of the LOA. For reasons which will be
explained l ater , it can only access memory over a short range
of possibl e addresses .

Mode 2 - 173 55 4 LOA 1079

This is a longer form of th e LOA comman d; it can access a box
anywhere in memor y . NOTE here that the machine code is in
three parts. The first part - 173 - is the command for LOA in
this three part form. The - 55 - a nd the - 4 represent the
address of the box 1079 which cont ains the data to be put in
the A hand. The reasons for this apparently strange number
which makes 1079 into 55,4 will become clear in the following
chapter, for now accept it is so. This mode is called absol u te
addresing .

Mode 3 - 169 71 LOA #71

This comma nd is different from the previous two. Inst ead of
looking for the information to be put into the accumulator in
one of the boxes in memory, the information you want is given
to you as part of the instruction . In this case the number 71
will be put into the accumulator. It has nothing to do at all
with the box at address number 71 . Note here that this
different type of addressing known as 'immediate' addressing is
shown in th e mnemonic by a ' # ' symbol before the number.

We know how to get the microprocessor to pick something up
memory, but before we can do anything useful we have to
how to get the microprocessor to do something with it. To

9

from
know
get

the microprocessor to place the cont e nts of its A hand
(accumulator) in memory, we use the instruction STA which
stands for Store accumulator in a specifi e d box in memory.

This instruction too has several addressing modes (seven in
fact) but only two of them will be discuss e d he re.

Mode 1 - 133 41 STA 41

This instruction puts the contents of the accumu lator in the
box at address 41. As in the LOA, the similar instruction in
two parts (zero page mode) can only reach a l imited number of
addresses in memory boxes.

Mode 2 - 141 57 ~3 STA 825

This is like Mode 1 except that it can put the contents of the
accumula tor in a box anywhere in memory (absolute addressing).
The - 141 - specifies the instruction and the - 57 - and - 3
contain the address of box 825 (this is e xplained in Chapter
3) .

QUESTION: Why is there no ' STA ' immediate mode (see LOA #71)?

ANSWER: The ' immediate ' mode in 'LOA #71 ' puts the number in
the instruction - 71 into the accumulator, somewhat like
being handed a letter, not just a post office box number of
where to find the letter. STA immediate mode would attempt to
put the contents of the accumulator in the STA instruction
itself. This is like being told to put a l etter not into a
post office box but into the instructions you have been given .
Obviously this has no practical meaning!

Simple program input

We will now write a few machine language programs to examine
the instructions we have learned so far. To make it easier
enter the following BASIC program:

5 PRINT CHR$(125);" "
1~ REM THIS PROGRAM WILL MAKE IT EASIER TO ENTER MACHINE CODE

PROGRAMS
2~ READ A
3~ IF A=-l THEN GOTO 7¢
4~ POKE 1536+X,A
5~ X=X+1

10

60 GOTO 20
70 PRI NT "BEFORE.. -LOCATION 40000 " ; PEEK (40000)
80 Q=USR(1536)
90 PRINT "AFTER . . . - LOCATION 40000 ";PEEK(40000)

100 END
1000 DATA 104
1010 DATA 169,33
1020 DATA 141,64,156
1030 DATA 96
9999 DATA -1

LINES 1000 - 1030 contain our machine l anguage program .

LINES 20 - 60 puts our program from data statements into me mory
boxes starting from 1536 so it can be exec ut ed .

LINES 70 - 90 print 'BEFORE' and ' AFTER ' tests on the me mory we
are getting our machine language program to change .

When the BASIC program is finished, our machine language
program will be contained in memory boxes as follows:

Address Data

1536 104
1537 169
1538 33
1539 141
1540 64
1541 156
1542 96

For the programmer's benifit this is written out in mnemonic
form as follows :

1536 PLA
1537 LOA #33
1539 STA 40000
1542 RTS

Assembly language
A program written out in mnemonic form is called an ' assemb l y
language' program, because to transform this list of letters
which can be understood by the programmer into a list of
numbers which can be understood by the microprocessor, you u se

11

a program called an ' assembler' . Throughout this book we give
yo u programs in mn emoni c form e . g . RTS:

address mnemonics

1536 PLA
1537 LDA #33
1539 STA 40i/Ji/Ji/J

1542 RTS

Our BASIC program, as we ll as p l acing our machine code in

memory, run s our program (see line 8i/J).

Yo u will see by our before a nd after ana l ysis of memory address
4i/Ji/Ji/Ji/J that it has been c hanged by our program as we intended .
The origina l va l ue of location 4i/Ji/Ji/Ji/J could have been any thing.
The number yo u see may c hange eac h time yo u run the program.
It is impossible to know what will be in memory be fore yo u put
something in there yourself, just as yo u can ' t t e l l what might
be l eft over in a po st off ice box you have n't l oo ked in bef ore .
The va l ue in memory address 4i/Ji/Ji/Ji/J after the program has bee n
run i s : 33. This shows that yo ur program did what was expected
it loaded the number 33 a nd then store d it into memory at
4i/Ji/J00.

Screen memory
There is one result from this program which yo u may not have
expec ted . Look a t the top lef t hand corne r 0 f th e sc r een. You
wi l l see it contains a n ' A' . Line 5 of the program clears the
screen , and nowhere in the BASIC program was the 'A' print e d on
the scree n, th ere for e it must have been put there by the
machine l a nguage program . We know the machine l a ng uage program
puts the value 33 into locat ion 4i/Ji/J0i/J. Could thi s print a n ' A'
on the screen? Try if from BASIC an d see what ha pp e ns . First
clear the screen in the norma l way a nd the type:

POKE 400i/Ji/J,33

You will see that the ' A' has r ea pp ea r e d on the to p l ef t hand
corner of the screen. This has happ e ne d because memory at
4i/Ji/J00 has a dua l purp ose. It is used to display t hings on the
screen, as wel l as carryi ng out the remembering func tions of
normal memory . Th e post office box description is st ill va lid,
bu t now t he boxes seem to have g l ass fronts so that yo u can see
on your screen wha t the boxes have inside them. If yo u l ook at

12

the table of screen display codes in Appe ndi x 14, you
that for the va lue 33 that we pl aced in location
character should be displaye d is an ' A'.

wi ll
40000

see
the

Let's try to display some of the other characters in t h e table
on the screen. Let's try to print an ' X ' on the screen . First
we need to look up the table of screen display codes to find
the value corresponding to the letter 'X'. You will find that
this va lue is 56. To put this in memory at address 40000 we
will us e the program we wrote earlier :

PLA
LOA #3 3
STA 40000
RTS

But this time we wi ll change LOA #33 to an LOA #56.

same BASIC program to put this into memory, we must
line 1010 which holds the data for the LOA command.
now read:

1010 OATA 169,56:REM LOA #56

Using the

now cha nge
This must

Our machine l anguage program will now (when the BASIC program
is run) read:

1536
1537
15 39
1542

104
169 56
141 64 1 56
96

PLA
LOA #56
STA 40000
RTS

When this is run you wi ll now see an ' X' appear in the top l eft
hand corner of your screen .

At this stage you might well as k, how do I print something
somewhere e ls e on th e screen? Th e a nswer is simp l e . 'Screen
Me mory' (these ' g l assfronted ' boxes) lives from 40000 all the
way through to 40959 . It is set up in 24 rows of 40 co lumn s as
you see on your screen. Memory at 40000 appears at the top
l ef t corner; 40001 appears next to that to the right, and 40002
next to that. Simi l arly 40000 + 40, 40040 appears immediately
under 40000 at the Left edge at th e second top row and 40040 +
40 (40080) under that, and so on.

Using the same BASIC routine to enter our program, we will now
try to print on the row second from the top of the screen. The

13

address of this pl ace on th e scre e n is g ive n by 40000 + 40
(screen base + 1 row) = 40040.

Therefore we wa nt our program to be :

PLA
LDA #56
STA 40040
RTS

clear the stack of pa ramet e r information
Ch a r ac t er ' X'
Fir st co l umn second r ow

To do thi s we ch a nge th e data we c hange t he data for our
program on line 10 20 to read:

1020 DATA 141 ,104,156:REM STA 40040

You will a lso need t o al t er lines 70 and 90 from 40000 to 40040
before running . The machine l anguage program will now print an
'X' on the second l ine from th e top of the sc r ee n.

Printing a message
We wi ll now us e our BAS I C program to
language program whi c h will disp l ay a
Type the following lines :

write a bigger
me ss age on the

mac hin e
screen .

1000 DATA 104
1010 DATA 169,40
1020 DATA 141,64,156
1030 DATA 169,37
1040 DATA 141,6 5 ,1 56
1050 DATA 169,44
1060 DATA 141, 66 ,1 56
1070 DATA 141, 67 ,1 56
1080 DATA 169,47
1090 DATA 141, 68 , 156
1100 DATA 96

Now run th e program. You will s ee t ha t it
at the top of t he sc r ee n. The machine
wro t e to do this was :

14

has printed ' HELLO '
l a ng uage program we

Address MACHINE CODE ASSEMBLY CODE
1536 104 PLA SET UP STACK
1537 169 40 LDA #40 SCREEN CODE FOR 'H'
1539 141 64 156 STA 40000
1542 169 37 LDA #37 SCREEN CODE FOR 1 E I

1544 141 65 156 STA 40001
1547 169 44 LDA #44 SCREEN CODE FOR ' L'
1549 141 66 156 STA 40002
1552 141 67 156 STA 40003
1555 169 47 LDA #47 SCREEN CODE FOR '0'
1557 141 68 156 STA 40004
1560 96 RTS

Check the va lues used with those given in the table of screen
disp la y codes.

It is interesting to note the way in which the two L's
printed. There was no need to put the value 44 back into
accumulator after it had been stored in memory once. When
take something from memory, or when when you put somet hing
one of the registers (hands) into memory, a copy is taken
the original remains where it started .

were
the
you

from
and

We can write the same programs we have just written using
different addressing modes . It is useful to be able to write
the same program in different ways for reasons of program
efficiency. Sometimes you want a program to be as fast as
possible, sometimes as short as possible, and at other times
you may want it to be understandable and easily debugged.

We will change the program to give us greater flexibility in
what we print. Type in the following lines:

15 PRINT "LETTER VALUE" ;: INPUT B:POKE 203 , B
1010 DATA 165,203 :REM LDA 203
1100 DATA 169,55 :REM LDA #55
1110 DATA 141,69,156 :REM STA 40005
1120 DATA 96 :REM RTS

Our machine language program will now look like this:

Address MACHINE CODE ASSEMBLY CODE
1536 104 PLA
1537 165 203 LDA 203
1539 141 64 156 STA 40000
1542 169 37 LDA #37
1544 141 65 156 STA 40001

15

1547
1549
1552
1555
1557
1560
1562
1565

169
141
141
169
141
169
141
96

44
66 156
67 156
47
68 156
55
69 156

LOA #44
STA 40002
STA 40003
LOA #47
STA 40004
LOA #55
STA 40005
RTS

NOTE that this finds its first l e tter from the box at memory
address 203 using zero page addressing instead of immediate
addressing. Line 15 of our BASIC program sets this box in
memory to be any number we choose. Run this program several
times choosing the values, 57,34 and 45.

We have seen in this chapter how memory ca n have more than one
function by the e xample of the memory betwee n 40000 and 40959,
which doubles as screen me mory. Similarly other parts of
memory can have special functions. Differe nt areas of memory
are used to control screen co lours, graphics, Player Missile
graphics, sound, the keybo a rd, games co ntroll e rs (joysticks)
and many other I/O (Input/Output) functions. These areas will
be referred to throughout the book on a purely introductory
level. We encourage you to find more detailed descriptions
from more advanced t ex ts.

Chapter 2 SUMMARY

1. The microprocessor uses registers (like hands) to move data
about and work on memory.

2. It has three general purpos e ha nds; the acc umulator, the X
register and the Y register.

3. We use the LOA command to get the mi croprocessor to pick
something up in th e accumulator (A hand).

4. We use the STA command to get the microprocessor to put the
contents of the accumulator in to a specified locat ion.

5. These commands and many others have several different
addressing modes which allow us flexibility in the way we store
and use our data:

immedi ate address ing ho lds the data
instruction.

~ absolute address ing us es data stored anywhere
~ zero p age addressing us es data stor e d within

area of memory.

16

within th e

in memory.
a limited

6 . A program written out in mnemonic form is called an
assemb l y language program.

7. Memory is used to display information on the screen.

8. Information is displayed according to a screen display code
which gives a numeric value to any printable character.

9. Memory is used to control other I/O (Input/Output)
functions of the computer.

17

18

Chapter 3
Introduction to Hexadecimal

Uses of hexadecimal

So far in this book we have talke d a bout memory in severa l
different ways, but we have not be en specif i c abo ut what it can
a nd cannot ho l d . We have use d memory to ho ld numbers wh ic h
represent e d c haracters, numeric va lues , mac hine code
instructions and memory ad dresses . We have merely put a number
in memory wit hout thinking a bout how th e comput er stores it, in
a ll but one case .

It is the abso lut e ad dress ing mode whi c h has s hown us that the
computer's number ing system is not as s imple as we might of
f irst thou ght, e . g 141 64 156 is t he mac hine co de for STA 40000
, l eav ing the numbers 64 a nd 156 signifying th e a ddress ~0000 .
Th e re is obvi ously somet hing goi ng on which we have not
accounted for .

We have p revio usly compar ed the mi c roproces sor's reg ist e r s a nd
memo r y t o ha nd s . How big a numbe r can you ho ld in your ha n d?
Well tha t dep e nds on what we mean by ho ld. You can us e your
fingers to co unt to five , so you can use one ha nd to hold a
numb e r from ze ro to five . Does that me an th a t the bigges t
number tha t yo u can hold i s five? You may be surprised to hear
that the answe r is NO .

Counting from 0 to 5 on your fingers l i ke this

is very wastef ul of the resources of yo ur ha nd ,
counting like that on a comput er wo uld be very wastef ul
r e sources .

19

just
of

as
it s

Binary

A computer's 'fingers' can either be up or down (on or off, in
the same way a light ca n be on or off) but, as with your

fingers, it can tell which of its fingers is on and which is
off. In other words, the value r e presented depends not only on
the number of fingers us e d but also on the position of those
fingers . Try this yourself give each finger one of the
following values (mark it with a pen if you like).

Now try to count by a dding the numbers represented by each
finger in the up (on) position:

Try to represent the following numbers on your fingers:

7,16,1¢,21,29

Q. What is the biggest number you can repr esent on your
fingers?
A. 1+2+4+8+16=31

As you can see 31 is quite a significant improveme nt on 5. The
computer's 'hands ' are different from ours in severa l
Its fingers are electronic signals which can either be
off, as opposed to our fingers be ing up or down.
programmer's benefit the condition on is given th e val ue
the condition off is g ive n the value ¢.

ways.
on

For
1

or
the
and

The other major diff ere nce is that the comput e r has eight
'fingers' on each 'hand '. This may sound silly, but there is
no reason for it not to be that way. As it turns out it is a
fair l y easy set up to handle. Th e computer ' s eight fingered
hand is called a 'byte ' of memory. As with our own fingers, we

20

give each of th e computer ' s 'fingers ' one of th e fo ll owi n g
values :.

1,2 , 4,8,16,32,64,128

Again we count b y adding together th e values of al l those
fingers in the ' on' positi on .

Eight fingered
hand

Computer's 'hand'
-byte

Number

32+ 16+ 1

128+64+4

16+1

49

196

17

Q. What is the biggest numb e r t hat ca n be represented by t h e
computer ' s ' eight f i nger e d ha nd ' ?
A. 128+64+3 2+16+8+4+2+ 1=25 5

Wit hout r ea lising i t, what we have done
i n troduce th e binary numb e ring system

i n this
(base

chap t er is
two). All

computers work in base two representing electrica l on ' s a n d
off's an e ndl ess stream of l's a nd 0's . This of course wou l d
make the progra mmer ' s task of contro l ling what is going on
inside the computer even mor e confusing t han it a l ready is,
e . g . :

Assemb l y Code

LOA #33
STA 40000
RTS

Mach i n e code

169 33
141 64 156
96

Binary

10101001 00100001
1000110 1 01000000 10011100
01100000

21

Why hexadecimal?
This of course would be impossible for a programmer to
remember, and difficult to type in correctly. We could of
course just us e decimal as list ed in the machine code co lumn.
As it turns out, this is not the most convenient form to us e.
Wh a t we do us e is hexadecima l or base sixteen . This may sound
strange but it becomes very easy beca use it relates c l ose ly to
the ac tual binary representation store d by the computer.

To convert betwe en binary and h exadec ima l is
hexadec imal digit can store a digit betwee n 0 and
just as eac h decimal digit mu st be between 0 and
one hexadecimal digit represents one half of a
fingered hand).

Binary Hexadecimal

easy . Each
15 (decima l)

9. Therefor e
byte (eight

I I I I I I I I I D o
\ 1\ ../ V V
0-15 0-15 0-15 0-15

The whole e ight fingered hand can be shown by two hexadecimal
digits. You might at this point be wo nd ering how one digit can
show a number between 0 a nd 15. Well it is exact ly th e same as
decimal the numbers 10, 11, 12, 13, 14, 15 (decimal) are
represent ed by the l etters A, B, C, D, E, F respective l y .

BINARY DECIMAL HE XADECIMA L

0000 0 0
0001 1
00 10 2 2
0011 3 3
0100 4 4
010 1 5 5
0110 6 6
0 111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
1111 15 F

10000 16 10

22

This s hows that converting from binary to hexad ecimal i s mer e l y
d i vid ing into easy- to-see segments of four (fingers) .

11101011[11111101 11111111111110111 lifA0hl01ifA 111111
'---...---/ '---...---/ '-----r---./ '------r-J '---r--" '--,,--/

9 E F 0 2 7

Hex and Binary mathematically
Math ematically any bas e , 10, 2, 16 or 179 follows a simp l e
format . Each digit takes the value Ax (BASE) Position -1

In other words in decimal 98617 is

7 x 10" + 1 X 101 + 6 x 10~ + 8 X Hi)'1 + 9 x 10' = 98617
7 x 1 + 1 x 10 + 6 x 100 + 8 x 1000 + 9 x 10000 = 98617
7 + 1 0 + 600 + 8000 + 90000 = 9861 7

In binary 01011101 is

1 x 2" + 0 x 2 I + 1 x 2 ~ + 1 X 21 + 1 x 2 I + 0 x 2; + 1 x 2'; + 0 X 27 = 93
1 x 1 + 0 x 2 + 1 x 4 + 1 x 8 + 1 x 1 6 + 0 x 32 + 1 x 64 + 0 x 128 = 9:1
1 + 0 + 4 + 8 + 1 6 + 0 + 64 + 0 = 93

In hexadecimal A7C4E is

14 x 16° + 4 x 161 + 12 X 16" + 7 x 16" + 10 x 16'
14 x 1 + 4 x 16 + 12 x 256 + 7 x 4096 + 10 x 65536

14 + 64 + 3072 + 28672 + 655360

Several points should be not ed here . Firstly, a ny
ca n be stored in one memory box, (a number from 0
be stored in 8 binary digits (bits), or as we have
them ti ll now ' fingers ' . Any numb e r from 0 to 255
in two hexa dec ima l digit s (FF = 15 x 16 + 15 x 1 =

= 687182
=687 182

= 687 182

numb e r wh ich
to 255) can
bee n ca lling
can a l so fit
255) .

This, however, is where our probl em with absolute addressing
occ urs. If we can 't put a number bigger than 255 into memory,
how do we specify a n address which may be betwee n 0 a nd 65535
(64K)? The solution is to use two boxes , not added together
but as part of t h e same numb er. Wh e n dea ling with addresses we
a re dea ling wit h 16 finger (16 bit) (2 byte) bina ry numbers .
This is t he same as saying four digit hexa decima l numbers . Th e
largest number we can hold in a four digit he xadeci ma l number
is:

23

FFFF 15 x 1 + 15 x 16 + 15 x 256 + 15 x 4096
15 + 240 + 3840 + 61440
65535 = 64K

which is l arge enough to a ddress all of memory , e . g . , the 2
byte (16 bit) hex number 13A9 equals:

1
0001

3
0011

A

1010
9

1001

(((1 x 16) +3) *256) + (10 x 16 + 9)
4864+169

= 5033

For examp l e , the two byte hex number 0405

4 x 256 + 5
1024 + 5
1029

Absolute addressing
will see

addressing
t o rememb e r
address are

If you look back at th e begi nning of this c hapter you
t hat this is the p rob l em associated wit h absol ute
which we have bee n able to so l ve. One ot her t h ing
wit h absolute addressing is that the bytes of the
a l ways backwards, e.g.,

STA 40000
141 64 156

The most signif i cant byte (high byt e) - 156 is placed last, and
the l east signifi cant byte (low byte) 64 is placed first .
NOTE that this i s the r e verse of normal storage, e.g . , normal l y
17 where 1 is the most significant digit (1 x 10) is stored
first. The 7 (7 x 1) is the l eas t significant and comes
second . The byt es of a n a bsolut e address are a lways stored l ow
byte, high byt e .

This chapter a lso exp l ains zero page addressing . Two byte
instructions l eave onl y one byte to specify the a ddr ess , e .g.,
LDA 38 - 165 38 . We have sa id before that when using 1 byt e we
ca n only count from 0 to 255. Th erefore zero page addressi ng

24

can only address the first 256 bytes of memory. A block of 256
bytes is ca ll ed a 'p age '.

To specify the fac t that we are
fo llows th e standard practice of
hexadecimal number.

using hexadecima l this book
placing a $ s ign before a

LDA 40000 is the same as LOA $9C40
LOA 65535 is th e same as LDA $FFFF
LOA 0 is th e same as LOA $0

From now on a ll machine code listi ngs wi ll also be shown in
hexadecimal;

add r ess code mn emonics

1536 68 PLA
1537 A9 21 LOA #$21
1539 80 40 9C STA $9C40
1542 60 RTS

irres pective of the fo rmat use d in th e assembly code, which
will vary de pendi ng on the ap plica tion.

Converting hexadecimal to decimal
We have provided a table in a ppendi x 3 for quick hexa decimal to
dec ima l convers ions. To use this c hart for single byte
numb ers , look up the vertical columns for the first hexadecimal
(hex) digit a nd the horizont a l rows for the second digit e.g.;

$2A - 3rd row down
11 t h co lumn from l ef t

Printed there is LO HI
42 10752

Look at the number under LO (low byte). 42 i s decimal for $2A
hex. For 2 byte hex numb ers divide into 2 single bytes . For
the left byte (or high byte) look up under HI a nd add to the
low byt e e . g .;

$7156 divide HI = $7 1 LO $56
HI - 71 - 8th row down

2nd column left

25

LO HI
113 28928

LO - 56 - 6th row down
7th column from l eft

LO HI
86 22016

Add hi gh and l ow 28928 + 86
$715 6 = 29014

NOTE : in all cases LO HI
x y

Y = 256 -I, X

29014

The high byt e is 256 times va lue of the same low byte.

Chapter 3 SUMMARY

1. In counting on a computer ' s 'fingers', position (which
fingers), as well as the number of fingers, is import a nt.

2. Each of the comput e r's ha nds and eac h piece of
8 'fingers', a nd th e biggest number they can hold
255

memory has
in each is

3 . An eight ' fingered' pi ece of memory is ca lled a byte .

4 . Each finger has a va lue which depends on
Th e fingers a re numb e r e d from zero to seven a nd
values are 1,2,4,8,16,32,64 and 128.

its
their

position.
possibl e

5. Hexade cimal (bas e sixteen) is the grouping toget her
binary . 1 Hex digit = 4 binary digits. He x is eas ier
ha ndl e than binary or decimal.

6. DECIMAL 0
HEX 0

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
2 3 4 5 6 7 8 9 ABC D E F 10 11 12

of
to

7. Zero page addressing can access the first 256 bytes, the
maximum addressable by one byt e .

26

8. Absolut e addressing can access 65536 (64K) bytes of memory
(all), which is the maximum addressabl e by 2 bytes .

9. Absolut e addresses are a l ways s t ored l ow byte first then
high byte, e . g ., 8D 98 17 LDA $1798 .

10. Hexadec ima l numbers are specified by prefixing them with a
$ s ign.

11. Remember the quick conversion table for hex to decimal in
Appendix 3.

27

28

Chapter 4
Introduction to ALPA +
Disassembler

We h ave provided yo u with two BASIC programs to help yo u put
your machine l anguage programs into memory. The first program
is ca ll e d ALPA which is an acron y m for ' Assembly Langu age
Programmi ng Aid' . A li st ing of t hi s progra m appears in
Appendix 11. We h ave also provided a disassemb l er program to
examine the ROMs an d your programs. A listing of this ca n be
found in App endix 11 as we ll. In Chapter 2 we used a sma ll
BASIC program t o put our machin e language programs into memor y ,
but as yo u can imag ine , it wou l d very soon b ecome a ti r esome
process if we had to us e this me tho d every time when we wanted
to enter our programs . Throughout t h e res t of the book we hav e
given a ll our exampl es of machi ne l ang u age programs i n ALPA
format. The features of ALPA are :

1 . Programs are store d as t ext a nd can be edi t ed with commands
like INSERT, DELETE and APPEND . Text is co nv e rt e d i nt o mac hine
l anguage by giving the ASM comma nd. This command assemb l es
your program a nd put the resulting code into an array ca ll ed
MEM . Thus assemb l ing yo ur program wi ll not crash th e machine.

2 . The progra ms you write with th e e ditor can be s ave d or
loade d to disk or t a p e . So you can work on a program, save it
to tape, go away and r e l oad it l a ter.

3. To h e lp in ins ert ing, de l e ting a nd e diting, each
instruction is put on a se perate line wi th a l ine number whi ch
yo u can use to refer e n ce it . The l inenumber is ge nerated
au toma tica l ly by the l ine e ditor.

4. The program can be li st e d using t h e LIST comma nd a nd
stopped with the CTRL and '1' k eys .

5 . A line i s divided into three fie l ds . F i e ld o ne contains
the l a bel, field two the operation code and f i e ld t hree th e
opera nd. Each of th e fie ld s are reached b y pressing the TAB
key - exce pt in the case o f field o n e, where t h e c ursor is
placed at the required position by th e computer. After a lin e
is typ e d a nd RETURN is pressed a new l ine number wi ll ap pear

29

automatically. Pressing RETURN at the start of a blank line
will take you back to the command mode.

6 . Your program can be stored anywhere
ORG instruction at the beginning of
instruction uses four digit hexadecimal

in memory by using
the program. The
characters only .

the
ORG

7. Instead of referencing a memory l ocation with an absolute
address it is possible to specify a l abel. So instead of using
$4567 it's possible to define $4567 as a label and just use the
label. An except i on to this rule is the branch instruction.
The destination specified in branch instructions must have an
ampersand before the label name or be fore th e absolute address
specification.

e.g. TABLE NOP
NOP
JMP TABLE
LDA TABLE,X
BNE &LABEL
BNE &$YlYl28

8. There are four assembler directives available in ALPA.
These are not actually 65Yl2 instructions but commands to the
assembler which are imbedded in the listing. They are ORG,
EQU, DFB and DFW.

ORG used to set the point in memory where programs are
t o be assemb l ed (it s e ts the program counter). An ORG
statement expects a four digit hexadecimal number following ORG
and any thing else will cause an illegal hexadecimal number
error. Only one ORG statement is permitted in a program. ORG
also defines the execution address of a program for the RUN
command.

e.g. ORG $YlYl05

EQU - assigns a value to a label. It is possible to assign
a zero page va lue or absolu te value to a l abel.

e .g. LABEL
ONE

EQU
EQU

$0005
$12

DFB -generates a byt e of data from a hexadecimal value ($00
$FF) supplied and puts

program counter location.
byte per DFB instruction.

e.g. DFB $12

DFW - generates a word
splits it into two bytes

it in the program at the current
There can only

of data from
and puts the

30

be one hexadecimal

a hexadecimal value,
two bytes into the

current program counter loca tion and the next one. Its also
automatically r eve rses the order of the bytes. Therefore if
you give the assemb le r the value $FF11, then the bytes
generated will not be put in memory in the order $FF and $11
but $11 and $FF.

e .g. DFW $FA90

To get ALPA running
A Listing of ALPA appears in Appendix 11.

1. Type in the program exactly as it has been listed in
Appendix 1 L

2. When you have finished typing it in,
(for casse tte save type: SAVE "C:ALPA"
SAVE"D:ALPA")

NOTE:

save
for

ALPA
disk

1. If you have made a n error while typing in a line
ATARI will reject it a nd print a n e rror message.
messag e will be inserted in th e actual program line,
be necessary to retype the entire line or use
edi ting keys to remove it.

immediately
save type:

then
The

the
error
will

cursor
so it
the

2. Eve n though a line ma y be accepted when it was entered, it
is still possibl e for it to cont a in err"ors. For example, the
ATARl cannot tell if a variable name is wrong, bec a use the
na mes of variabl e s are chosen by the programmer (e.g. VAR$="A"
instead of VAS$="A" would not b e detected a s an error by the
computer, but would result in an error report when the program
was RUN). So if ALPA does not work, carefully compare what you
have typed in with the ALPA listing in the book.

Using ALPA
All numbers used in ALPA are to be e nt e r e d in hexadecimal.
Ze ro page hex numbers are distinguished from absolute hex
numbers by their length . Zero page numbers are expected to be
two digits long and a b so lut e numbers four digits long.

When ALPA is first initialised it is, by default, in Command
mode. An as terisk and cursor will a ppea r a nd ALPA will be
waiti ng for a command. To enter the text ed itor use the
command 'APPEND'. This will put you in the e ditor a t the next
line number , thi s will be '1' if there is n o t e xt. At this
stage you are ready to typ e in yo ur progra m. Th e programs you
will write will be in the fo llowing format:

31

linenumber Label Operation-Code Operand. (seperated
into fields with the TAB key) .

- operation code is th e mn emonic
command you want to typ e. Followed by

instruction
the operand

of th e
(e. g.

address or data), as in the following:

1 LABEL LDA #$f/;5

or

STA $9C4f/;

ALPA commands
The following commands are availab l e in ALPA:

1. LI ST
This command wi ll display a range
and press RETURN . It will ask fo r
the ending linenumber.

of lin enumbers . Type
th e starting line number

2 . ASM
This command assembles your
all references are reso l ved
NOTE you must ASM a program

source program into a n
according to th e value
before you can RUN it .

array
of the

3 . RUN
This command exec u tes yo ur program in memory starting
first address specified by the ORC statement. It does
copying the machine code in th e array MEM into memory
ca lli ng the program wi th USR . The ASM command must
prior to the RUN command.

4 . WATCH

from
this

and
be

LIST
and

and
PC.

the
by

then
us ed

This command asks you which address you want to 'WATCH ' and
invokes the WATCH function. The contents of the address
specified wil l be printed before a nd after the program in
memory is executed by RUN. This is used to observe the results
of a program on memory.

5 . NWATCH
This comma nd turns off the WATC H feature.

6. LOAD
This command loads an ALPA program saved using th e SAVE command
in ALPA from cassette or disk. Type LOAD an d press RETURN, a
prompt will appear and you must enter the device to load the

32

program from and th e filename . No quotes are nec essary round
the filename.

7 . SAVE
This command saves th e c urr e nt ALPA program to cassette or disk
for LOADing in th e future to wo rk on without having to typ e it
in again. It wo rks in the same fashion as LOAD.

8. DELETE
This command d e l e tes a lin e from th e program. Type DELETE and
press RETURN, then input the linenumber you want deleted.

9. INSERT
This command a ll ows you to insert lines into the
are inserted after the lin e number specified.
t a kes the form:

text. Lines
Th e command

INSERT (Press RETURN)

:linenumber (Press RETURN)

Th e n e nt er the text as usu a l. Thi s mod e is exited by press ing
RETURN at the st ar t o f a n ew line .

10. QU IT
This command exi ts ALPA and returns you to BASIC .
possible to rest a rt ALPA with COTO 12.

11. NEW

It is

Removes your progra m fro m the text buffer (Deletes al l of the
text).

Memory usage in ALPA
You wi ll notic e that we have, co n sistentl y throughout the
us e d only a f ew areas of me mory for our programs and our
We have not don e this because th ey a re the only ones that
work, but beca u se we tried to use memory that we are sure
nobody else (BASIC, the Operating Sytem a nd ALPA itself)
be using.

book,
data .
will
that
wi ll

The programs tha t run wi thin the comput er al l the time, BASIC
and the Operating System, us e specific areas of memory to store
their own data in. It is good p rogramming practice to know a nd
avoid th ese areas to e n s ur e that your program does not stop the
Op e r at ing Sytem o r BASIC from functioning proper ly. (Remember
ALPA is written in BASIC). By checking through the me mory ma ps
and me mory usage c hart s provided in Appendices 6 and 8, yo u

33

will be ab l e to find other a r eas to us e , but throughout the
book we have mainly used memor y at :

$0600 - $06FF
$CB - $CF zero page

The bes t areas to us e in zero page memo r y, when it is very
full, are areas set as aside as bu ffers etc .

If a program written in ma chine co de looks as if it is never
going to stop, it may we ll not. One way to stop these programs
is to press RE SET. You will be put back into BASIC with the
usual s creen di s pl ay . If thi s does not work then the machine
is well and truly 'hung' and no thing short of swi tch ing off and
on will reset the machine.

To continue in ALPA wi th yo ur program
(unl ess you switched off). Thi s is
follow if you acciden ta ll y l eave ALPA.
type RUN. This sh oul d get ALPA working
wil l be lost.

intact, type GOTO 12
a lso the procedure to
If this does no t work
agai n, but your program

We will now r epea t some of the programs we used ear lier , to
demonstrate the us e of ALPA, e . g.,

PLA
LDA #$21
STA $9C40
RTS

This is the program we used a t the begi nning of chapter 2. To
us e ALPA, t esti ng l ocation $9C40 (40000) before an d after the
program, type the instructions on th e right ha nd side of the
program above, e . g. ,

1
2
3
4
5

ORG $0600
PLA
LDA #$21
STA $9C40
RTS

The computer wi ll print the next line number a nd wait for
input. After yo u have typed in the program, assembl e it with
t he ASM comma nd. To watc h the c ha nge i n location $9C40 type:

WATCH
To which the computer will r eply:
(wh a t address)? $9C40

34

Now execute the program with the RUN command and study the
output before and after the program was executed. Type NEW to
remove the program and tryout some of the other programs in
chapter 2 using ALPA. Remember that ALPA uses only hex numbers
and that Chapter 2 uses decimal, so it will be necessary to
convert from decimal to hex.

Further use of ALPA will be discussed as it becomes relevant to
the commands being discussed.

There is a disassembler to accompany ALPA. It is listed in
Appendix 11 along with the listing ALPA. After the
disassembler has been successfully typed in and saved, it can
be used to disassemble memory and examine various parts of the
130xE. It can also be used to disassemble your programs. To
do this the object code must be in an area that will not be
overwritten by the disassembler, if this is so you can load and
run the disassembler. The Disassembler supports the following
commands.

1. MEM
This command asks you the question 'DISASSEMBLE FROM WHAT
ADDRESS:?' It will then disassemble (produce assembly code)
using the contents of memory from the address specified for one
screen. Any key except E will produce another screen of
disassembly. Press the E key to exit to normal command mode.

2. DUM
This command asks you
ADDRESS : ?' It will then
that address as a series

3 . EXI

the question
produce a 'hex
of hex bytes.

'DUMP
dump'

MEMORY FROM
of memory

WHAT
from

Using this command will exit the dissasembler and pass control
back to BASIC.

4. ASC
Displays an area of memory in ASCII character format.

5. CMD
Displays a list of the disassemblers commands.

Chapter 4 SUMMARY

1. We will use ALPA to enter all of our machine language
programs after this Chapter.

35

2. ALPA's commands are as fo ll ows:

APPEND
LIST
RUN
WATCH
NWATCH
LOAD
SAVE
DELETE
INSERT
QUIT
NEW

3. Although we will list programs in the form:
line ### Instructions in Assembly La nguage, you need

only type the instructions and l eave the rest up to ALPA .

4. The Disassembler has the following commands:

MEM
DUM
CMD
EXI
ASC

36

Chapter 5
Microprocessor Equipment

In the previous four chapters we have covered a lot of the
groundwork needed to understand the intricacies of machine code
programming. More of th e basics will be introduced as we go
along. We have covered enough at this stage to move on to such
things as using machine l a nguage to do some arithmetic.

Storing numbers
We know from Chapter 3 th a t the largest number we can store in
a single byte (memory location) is 255. We have also seen that
for addresses bigger than 255 we could use 2 bytes to represent
them in low byte/high byte format so that Address = low byte +
256 x high byte.

Surely then we could use th e same method to represent any sort
of number greater than 255 a nd less than 65536 (65535 255 +
256 x 255), and in fact if necessary this can be taken even
further to represent even higher numbers.

Numb 1st byte + 256 x 2nd byte + 65536 x 3rd byte +
... etc

The carry flag
Now, when we add two 1 byte numb ers together it is possible
that the result is going to be larger than 255. What then can
we do with the result of the addition? If we put the result in
one byte it could be no bigger than 255, so:

207 + 194 401 mod 256 145

but also

58 + 87 = 145

37

Surely th e r e is some thing wrong here . We must somehow be able
to store th e extra information lost
than 255 . Th e re is provision

microprocessor in the for m of
'fl ag ' ca ll ed the carry fl ag .
on) if a r es ult is geater than

207 + 194
58 + 87

145; carry
145; carry

a
Th e
255,

1
o

when a resu lt is l a rge r
for this within the 6502
si ng l e bit (single fing e r)
carry fla g is ' set' (turne d

e . g . ,

NOTE: a single bit is large enough to cover a ll possible cases
of carry .

11111111
+ 11111111

11111110 + carry

255
+ 255

254 + carry

Therefore to add 2 byt e numbers toge th e r, you add the l ow
first and store the result, and the n and the high
including th e ca rry bit from the addition of the low
e .g. ,

30A7 + 2CC4 506B

is done in the following manner:

low byt es

A7
+ C4

6B car ry s e t

high bytes

30
+ 2C
+

50

Answer

ca rry bit

506B

38

byt es
byt es

byt es ,

Adding numbers
To handle this, the machine language instruction to add two 1
byte numbers together is ADC (add with ca rry). This adds th e
specified number (or memory) plus carry flag to the accumulator
and leaves the result in the accumulator.

The instruction automatically adds in the carry bit to its

ca lculation. Therefore since the carry could be set before you
put anything in it (like memory see chapter 1), it is
necessary to set the carry to zero before an addition if that
addition does not wa nt to add the ca rry of a previous
calculation. To set the carry flag to zero we use th e
instruction CLC (Clear Carry Flag) before such ADC's.

Type in the following program, using ALPA:

NEW
APPEND
1 ORC
2 PLA
3 LDA
4 CLC
5 ADC
6 STA
7 RTS

WATCH
(watch a ddress)? Qj3FD
ASM
RUN

Th e program will print:

'address Qj3FD before'
'address Qj3FD after'

$Qj6QjQj

#$Qj3

#$Qj5
$Qj3FD

We will n0W c hange lines 3 a nd 5

3
+5

8

performin g . NEW the old program and
to alter the sum we are
replace it with:

ORC $Qj6QjQj
2 PLA
3 LDA #$27
4 CLC
5 ADC #$F4
6 STA $Qj3FD
7 RTS

39

ASM and RUN the program and the computer will r espond with:

address 03FD before 08
address 03FD after 1B

27
+ F4

carry is set 1B

NOTE: we cannot tell the carry has been set from our results.

We will now
deliberately
before doing
and type the

change the program again. This time we will
set the carry using SEC (Set Carry Flag) command
our addition. Remove the l ast program with NEW
following lines:

1
2
3
4
5
6
7

ORC
PLA
LDA
SEC
ADC
STA
RTS

$0600

#$03

#$05
$03FD

ASM and RUN the program,
address 03FO before
address 03FO after

a nd the computer wi ll respond with:
1B

= 09

Type

3
+ 5
+ 1 (carry bit)

9

in the follmving lines:

ORC
2 PLA
3 LOA
4 CLC
5 AOC
6 LOA
7 AOC
8 STA
9 RTS

ASM and RUN th e program.

address 03FO before 09
address 03FO after 18

$0600

#$ 27

#$F4
#$03 ·
/1$14
$03FO

40

The carry is set by the addition on line 5 a nd carries through
to the second addition on line 7, he nc e:

Carry

27
+ F4

IB

3
+ 14
+ 1 (carry)

18

Now change line 5 and repeat

2
3
4
5
6
7
8
9

address 03FD
address 03FD

carry 0

27
+ 20

47

ORC
PLA
LDA
CLC
ADC
LDA
ADC
STA
RTS

before 18
after 17

3
+ 14

$0600

#$27

#$20
#$03
#$14
$03FD

+ 0 (carry)
17

From these we see how th e carry bit is carried along with the
result of one addition to anot her .

We wi ll now use this t o do an addition of 2 byte numb e rs using
the met hod we described pr evious l y .

Two Byte addition
Sup po se we wa nt to add t he numbers 6C6 7 and 49B2.

6C67
+ 49B2

????

41

To do this we must separate the problem into two single byte
additions:

low bytes 67 high bytes 6C
+ B2 + 49

carry +
carry 19

B6

Clear the previous program using the NEW command a nd then type
the following:

1 ORC $0600
2 PLA
3 LDA #$67
4 CLC
5 ADC #$B2
6 STA $03FD
7 LDA #$6C
8 ADC #$49
9 STA $03FE
10 RTS

This will store the low byte of the result in 03FD and the high
byte of the result in 03FE. To c heck our answer we will use
the WATCH command on both byt es (by running twice).

Now

ASM and RUN the program
address 03FD before ??
address 03FD after = 19

type:

WATCH
(watch address)? 03FE
RUN
a ddress before ??
address after B6

Now join the high byt e an d the low byte of the result to give
the answe r:

6C67
+ 49B2

B619

42

This procedure can be extended to add numbers of any length of
bytes.

Subtracting numbers
The microprocessor, as well as having an add command has a
subtract command. Similar to the ADC command the SBC (Subtract
with Carry) uses the carry flag in its calculations. Because
of the way in which the microprocessor does the subtraction,

the carry bit is inverted (1 becomes ¢ and ¢ becomes 1) in the
calculation, therefore

8
- 5

2

8
- 5

CARRY (CARRY 1)

3

Consequently, to do a subtraction without carry, the carry
must be set to 1 before the SBC command is used. Remove
previous program and type the following:

1 ORG $¢6¢¢
2
3
4
5
6
7

WATCH

PLA
LDA
CLC
SBC
STA
RTS

#$¢8

#$¢5
$¢3FD

(watch address)? ¢3FD
ASM and RUN this program.

You will see from the results that by clearing the
instead of setting it has given us the wrong answer. We
now correct our mistake by setting the carry to 1 before
subtract. Replace the previous program with this one:

1 ORG $¢6¢¢
2 PLA
3 LDA #$¢8
4 SEC
5 SBC #$¢5
6 STA $¢3FD
7 RTS

ASM and RUN

43

flag
the

carry
will

the

You will now see th at we have the correct answer :

(CARRY C/J)

8
- 5

2

8
- 5

C/J (CARRY

3

1)

You may have wond e red how the microproc e sso :' handles
subtractions where the resu lt is less t han ze ro. Try for
examp l e 8 - E = - 6. Change line 5 of th e program, ASM and RUN
it.

1
2
3
4
5
6
7

ORG
PLA
LOA
SEC
SBC
STA
RTS

a ddress C/J3FO before ??
address C/J3FO aft e r FA

$C/J6C/JC/J

#$C/J8

#$C/JE
$C/J3FO

8
- E

or BORROW = 1C/J 8 carry c l eared to zero
- E

- 6

NOTE: that - 6 C/J
FA + 6

6
C/J

FA

FA

This clearing of the carry to signify a borrow ca n be
multibyte s ub traction in the same way as it can for
addition. Try to write a program to do t he
subtraction :

$E6 15 - $7198

Here is a n exampl e

2
ORG $C/J6~0
PLA

44

used for
mul tibyte
following

3 LDA #$ 15
4 SEC
5 SBC #$98
6 STA $03FD
7 LDA #$E6
8 SBC #$71
9 STA $03FE
10 RTS

ASM and RUN this, noting the results. Use WATCH to observe
$3FE - the high byte of the result and RUN again. Combine the
high and low bytes of the result to get the answer $747D.

Thes e instructions ADC and SBC can be used in
modes, like most other instructions. In this
only used immediate addressing.

many addressing
chapter we have

NOTE: SEC and CLC hav e only one addressing mode implied.
They perform a set/reset on a specific bit of the status
register and there are no alternative addressing modes. Th e ir
method of addressing is 'impli ed ' within the instruction.

An exercise
Write a program to add the value $37 to the contents of memory
location $03FD using ADC in the 'absolute' addressing mode, and
put the result back th ere . Use WATCH to observe the results.

NOTE her e :

LDA #$FF
CLC
ADC #$01

leaves the value

LDA #$00
SEC
SBC #$01

leaves the value

#$00 in A with the carry set, and

#$FF in A wi th the carry clear (borrow) .

Therefore we have what is ca ll ed 'wrap-around'. Counting up
past 255 will start again from 0, and counting down past zero
will count from 255 down.

45

Chapter 5 SUMMARY

1. Any size number may be represented by using more
byte. Numb = 1st byte + 2nd byte x 256 + 3rd byte x
•.. etc.

than
65536 +

2. The 65¢2 microprocessor has a carry flag which
signify the carry of data into the high byte of
addition.

is set to
a two byte

3. ADC adds two bytes plus the contents of the carry flag. A
CLC should be used if the carry is irrelevant to the addition.

4. ADC sets th e carry f lag if the result is greater than 255,
and clears it if it is not. The answer left in the acc umulator
is always less than 256. (A = Result Mod 256).

5. SBC subtracts memory from the accumulator and then
subtracts the inverse of the carry flag. So as not to have the
carry interfere with the calculations, a SEC should be used
before SBC.

6 . SBC sets the carry flag if the result does not require
borrow (A - M) ¢). The carry flag is cleared if (A - M <
and the result left in A is 256 - (A - M).

7. Two byte addition:

CLEAR CARRY
XX = ADD LOW BYTES + (CARRY = ¢)
YY = ADD HIGH BYTES + (CARRY = ?)
Result is $YYXX

8. Two byte subtraction:

SET CARRY
XX = SUBTRACT LOW BYTES - INVERSE (CARRY = 1)
YY = SUBTRACT HIGH BYTES - INVERSE CARRY (CARRY 7)
Result is $YYXX

46

a
¢)

Chapter 6
Program Control

Player-Missile Graphics
Back in Chapter 2 we saw how we could display information on
the screen by pl acing that data in 'screen memory'. There is a
special 'chip' in the Atari 130XE which handles screen oriented
tasks. It is called the Antic-chip. (A brief guide appears in
Appendix 5). Using th e techniques of addition and subtraction
that we l ea rned in the pr evio us chapter, we will look at some
of the following featur es avai l ab l e on the ANTIC chip.

Type in the following program using ALPA:

NEW
NWATCH
APPEND
1 ORC $0600
2 PLA
3 LDA #$03
4 STA $D01D
5 LDA #$3E
6 STA $022F
7 LDA #$0 1
8 STA $D008
9 LDA #$32
10 STA $D000
11 LDA #$58
12 STA $02C0
13 LDA #$90
14 STA $6A
15 STA $D407
16 LDA #$02
17 STA $9432
18 LDA #$E2
19 STA $9433
20 LDA #$42
21 STA $9434
22 STA $9435

47

23
24
25
ASM a nd RUN.

LDA # $FF
STA $9 436
RTS

This s hould produce a sma ll s pace s hip near the top left of the
scree n. Thi s s qu a re is known as a ' Player Missile Gra phi cs ' .
It is the size of e i ght doubl e size d pixels but can be move d
about the screen qu ite easi l y a nd over other characte rs. It is
controlled by the regi s ters (ha nd s) of t he ANTIC chip. These
r egis ters are similar to the reg i sters of t he mi croprocesso r
but in order to use them direc tly th ey have bee n 'mapped' onto
memory from D400 to D5FF.

Th e term 'mapped' means that t hese r eg i s t ers have be en put over
the memory. When you access the memory yo u are in fact dealing
with the registers of t he ANTIC c hip or whatever e l se ma y be
mapp e d over that memory . To use the descriptio n of the post
office boxes we were using before, you cou ld imag in e thi s sort
of ma pped memory as post office boxes with fa l se bottoms, a nd
chutes th a t co nn ect t he bo x to some sor t of mac hine somewhere
els e in the post office .

Moving Player-Missile Graphics
Wh at we are goi ng to do i s wri t e a program to move our Pl ayer
around the scree n.Th e hori zo nta l position of the f ou r pl ayers
i s controll ed by r egis ters at locations 53248 to 53251. We are
going to move pl ayer zero ac ross the screen by i ncre me nting his
hori zontal position reg is ter (53248).

Looping using JMP
Th ere is an inst r uctio n for t hi s it
instructi on . Like BASIC ' s ' GOTO' you have
whe r e to jump to in the form JMP address
Hi gh Byte) (ABSOLUTE ADDR ESSING) .

i s
to

(JMP

the JMP
tell the

l ow Low

(JUMP)
'JMP'
Byte,

We wi ll us e this instr uc ti on to create a program e quiva l e nt to
th e following BASIC program.

INITIALISE

100 POKE 53248,X:X=X+4
110 GOTO 100

48

Del e te the RTS from the end of the l as t program and add the
following lines wi th AP PEND:

26 LOOP LDX COUNT
27 INX
28 INX
29 INX
30 INX
31 STX $D000
32 STX COUNT

33 JMP LOOP
34 COUNT DF B $00

ALPA label name addressing
The addressing mod e used in line 33 is absolute addressing.
One of ALPA ' s feat ures is that it will c a lculate addresses for
you. Normally, when using JMP in abso lut e a ddressing mod e , you
would hav e to work out th e a ddress you want the JMP command to
go to - which ca n be a nuis a nce as shown in the following
samples:

1. 0600: 4C 08 06 JMP $0608
0603: A9 02 LOA #$0 2
0605: 8D FD 03 STA $3FD
0608: 60 RTS

2. 03FF: 4C FD 03 JMP $03FD

0402 : A9 02 LDA #$ 02
0404: 8D FD 03 STA $03FD
0407 : 60 RTS

3. 0600 : 4C 0B 06 JMP $060B
0603: A9 02 LDA #$0 2
0605 : 18 CLC
0606: 69 04 ADC #$04
0608: 80 FO 03 STA $3FO
060 B: 60 RTS

To create progra m 2. from program 1.

In other words to move the same program to a diff erent pa r t of
memory, you wo uld have to go through the whole program, eac h
time changing a ll the JMP instructions that JMP to a n a ddr ess
within the program, a nd cha nge them (and only them) to point to
a n ew addre ss .

49

To create program 3. from program 1.

This is done by the addition of a few short commands, something
you might often do while debugging. You would also have to
change any JMP commands to a new address. This would of course
be extremely frustrating, time consuming and error prone.
Therefore ALPA has a facility for specifying the address of the
JMP as a label. When the program is entered into memory with
ASM, ALPA converts the reference from a label to an absolute
address which the microprocessor can understand and execute. You
can see these addresses being generated when the ASM command is
given.

You will notice that the PMC (Player missile Graphic) is
across the screen at speeds that make it blur completely.
is only a small indication of the speed of a machine
program.

Infinite loops
You will also notice that the program· is still going.
like the program

100 POKE 53248,X:X=X+4
110 COTO 100

moving
This
code

Just

Our program will go forever around the loop we have created.
This is called being stuck in an 'infinite loop'.

The 'BREAK' key will not get us out of this loop. There is a
machine code program which is part of BASIC that tests to see
if the BREAK key was pressed, but our program does not look at
the keyboard. There are only two ways to escape from an
infinite loop. One is to press the 'SYSTEM RESET key, which
creates an NMI (Non Maskable Interrupt) which will stop the
computer and return it to BASIC. The other way to stop the
program is to turn the computer off. Press the SYSTEM RESET
key and you will be returned to BASIC, to continue in ALPA with
your program intact type:

CO TO 12

50

There is no other way to exit a machine language routine unless
it returns by itself using an RTS. Type LIST. NOTE that
because of the JMP the program would never gets as far as an
RTS, as in the following BASIC program:

10 X=4
20 PRINT "HELLO";X
30 X=X+4
40 GOTO 20
50 END

Obviously the END statement is never reached here, because of
the GOTO in line 40.

To get this program to print HELLO 4 to HELLO 100 we would
write :

10 X=4
20 PRINT "HELLO";X
30 X=X+4
40 IF x=104 GOTO 60
50 GOTO 20
60 END

Here line 40 will GOTO line
\-.'ill GOTO the END statement
104, the program will GOTO
loop to line 20. To do this

60 only if x=104 and the program
and stop. If X is not equal to
line 50 and continue around the
in machine language we need one

instruction to compare two numbers (X and 104) and another
instruction to JMP depending on the result of the comparison
(IF GO TO 60).

Comparing numbers
We have previously (see Chapter 5) met the idea of a flag. It
is a single bit (single finger) value held inside the
microprocessor. In chapter 5 we met the carry flag which was
set to signify the need for a carry in a multibyte addition
(reset or cleared for a borrow in multibyte subtraction). The
microprocessor has seven flags for different purposes which it
keeps in a special purpose register called the Processor Status
Code Register (or Status Byte).
These seven flags (and one blank) are each
own bit (finger) within this byte
microprocessor commands dealing with them.

51

represented by their
and have special
These flags are set

or reset by most machine code commands. (More will be said
about them in Chapter 10). For example, ADC sets or resets the
carry flag depending on the result of the addition. Similarly
'CMP' (Compare), which compares th e contents of the accumulator
with the contents of a memory location (depending on th e
addressing mode), signifies its result by setting or resetting
flags in the status byt e .

Branch instructions
The other instructions we said we would need to write our
program is one which would jump dependant on the values of the
processor status fla gs . This form of instruction is called a
'branch' instruction. It is differen t from the JMP instruction
not only in the fact that it is conditional (dependant on the
conditions of the status flags), but it is unique in that it
uses the relative addressing mode.

Relative
relative
relative
the end

calculate

addressing mea ns that the address used is calculated
to the branch instruction. More will be said about
addressing and the way th e branch instructions work at
of this chapter. Meanwhil e we will use ALPA to

the address for us as we did with th e JMP
instruction.

Zero Flag

To test if the result of a CMP instruction on two numbers is
equal we use the BEQ (Branch on Equal) command.

To add this to our prev i o u s machin e lang uag e
last nine lines of the previous program a nd
these, using APPEND:

25 LOOP LOA COUNT
26 CMP #$78
27 BEQ EXIT
28 CLC
29 AOC #$01
30 STA $0000
31 STA COUNT
32 JMP LOOP
33 EXIT RTS
34 COUNT OFB $00

52

program DELETE the
replace them with

Line 30 has been changed so that the P l ayer does not move as
far in each jump, hence the the player will be slowed down.
Also a different method of incrementing the horizontal position
has been used. Despite incrementing the horizontal position
register by only one pixel, it will sti ll be moving too fast
to be seen . ASM and RUN this program.

NOTE : ALPA has calculated and 'OK'ed both addresses using the
l abel references.

You will see this time that
across the screen and stopped
with an RTS.

the
as

Program summary
Lines 1 -24 Initialisation

player moved
the program

Lines
Line
Line

25-32
27
33

Player movement loop
Test for end condition
end

about
ended

ha lfway
normally

We have managed to find a way to use a loop that tests for a
condition on which to exit a loop. We could however make this
more efficient by creating a program that looped until a
certain condition was met. This difference is subtle but it is
shown by this BASIC program in comparision to the previous one .

10 x=4

20 PRINT "HELLO";X
30 X=X+4
40 IF X0104 THEN 2,/)
50 END

By creating a loop until a condition is reached we have saved
ourselves one line of t he program. If speed or space were
important to the program, this wou l d be a useful alterat i on .
Overall it is good programming practice to write code with
these considerations in mind . It produces neater, less tangled
programs that are easier to read and debug.

This programming method translates well into machine langu age
using the BNE (Branch on Not Equal) command.

Delete the l ast ten lines of the previous program and add these

53

to the end of it with APPEND:

25 LOOP LDA COUNT
26 CLC
27 ADC #$01
28 STA $D000
29 CMP #$80
30 BNE &LOOP
31 RTS
32 COUNT DFB $00

LIST the program as it currently stands.

Program summary

Lines 1 -24
Lines 25-30
Lines 31

Initialisation
Player movement loop
e nd

You will see that by changing the loop we have untangled the
flow of the program. ASM and RUN the program to verify that it
still functions the same with the changes. As you can see,
there are many ways to write the same program. The notion of
right and wrong ways of machine language programming are
absurd, to quote a well used phrase, 'Don't knock it if it
works'. It may be that programs that are structured well are
better for you as they are more legible and easier to
understand.

There is a lot we can learn by knowing how an instruction
works. The CMP instruction for example compares two numbers by
doing a subtraction (accumulator - memory) without storing the
result in the accumulator. Only the status flags are set or
reset. They in fact test the status register 'zero' flag and
stand for:

BEQ - Branch on Equal to zero
BNE - Branch on Not Equal to zero

It is the condition of the zero flag which is set by the result
of the subtraction done by the CMP command (accumulator
memory = 0 which sets the zero flag = 1). This flag is then
tested by the BEQ or BNE command. This may seem a meaningless
point until you realise that, since the CMP command is done by
subtraction, the carry flag will also be set by the result. In
other words, if the subtraction perfomed by the CMP needs a
'borrow' (A - Mem < 0, A less than memory) , then the carry will
be cleared (CARRY 0). If the subtraction does not need a
'borrow' (A - Mem > 0, A greater than or equal to memory), then
the carry will be set (CARRY =1)

54

Therefore the CMP command tests not only A = Mem but also A <
Mem and A < Mem and therefore (if A > Mem but A < > Mem) then A
> Mem. We can now write our BASIC program:

10 X=4
20 PRINT "HELLO" ;X
30 X=X+4
40 IF X(101 GOTO 20
50 END

This makes the program even more se l f exp l anatory . It shows
clearly that values of X bigger than the cutoff 100 will not be
printed. To test for the accumulator less than memory, yo u us e
the CMP followed by BCC (Branch on Carry Clear) b ecause a
borrow wi ll have occurred. To test for the accumulator greater
than or equal to memory use CMP fo ll owed by BCS (branch on
Carry Set).

Write a machine language program to move a player across the
screen and test for A < memory (as in previous BASIC programs).

Relative addressing
All branch instructions using an address mode cal l ed relative
addressi n g (JMP is not a branch instruction). In relative
add r essing th e address (the destination of the branch) is
calcu l ated relative to the branch instruction. All branch
instructions are two bytes long one byte specifies the
instruction the other byte specifies the address . This works
by the second byte specifying an offset to t h e address of the
first byte after the instruction according to the Tables in
Appendix 4. From 0 - 7F means and equivalent branch forward
and from 80 - FF means a branch backward of 256 - the value.

Therefore:

F0 03 BEQ dest
80 FO 03 STA $3FO

dest 60 RTS

wi ll be the same no matter where in memory it is placed.

The value 3 as part of the branch instruction is the number of
bytes to the beginning of the n e xt instruction (80) .

1st next byte (00)
2nd next byte (06)
3rd next byte (60)

55

With the following programs, check that the destination address
of the branch is in fact the address of instruction after the
branch plus the offset , e.g,

0600 : Fa 03 BEQ $0605
0602: 8D FD 03 STA $3FD
0605 : 60 RTS

and

03FD: F0 03 BEQ $0402
03FF : 8D 00 06 STA $600
0402 : 60 RTS

The machine code rema ins the same but the disassembled version
differs. The program will work exact l y th e same at e ither
address . This is comp l etely opposite to the case of the JMP
which uses absolut e addressing and cannot be relocat e d.
Fortunately we do not have to calculate offsets using th e
tabl es, because these offsets wou ld have to be recalcul a ted
every time we ad ded an instruction between t he branch command
and its des tination a ddress. When we use th e branch command we
ca n get ALPA to ca l cu l ate the offset for us using branch l abe l
name.

Use ALPA to write some programs with branch instruction s in
them, using the l abe l feature, and check ALPA ' s output by
disassembling the ASMed code, then verify that the branch takes
the correct path usi ng the relative branch table in Appendix 4.

Chapter 6 SUMMARY

1. A Pl a yer-Missil e is a character eight pixe ls wid e ,2 56
pixels high and the s iz e of 32 normal characters, whic h can be

moved over the screen on top or behind other c ha rac ters.

2. The command JMP a ddr ess is the e quiva l ent to BASIC ' s GOTO
command . It makes th e program jump to the address specified .

3 . ALPA can
($5610) or as
l abel WORD).

ha ndl e addresses as either absolute
l abels, e . g, JMP WORD (Jump to th e va lue

addr esses
of the

4. To break out of a n infinite l oop, press system RESET and to
start ALPA without losing your current program en ter: GOTO 12

56

5. The micropro cessor 's STATUS CODE Register has seven
(and one bl a nk) which are set by some machine
instructions .

flags
code

6. Branch instructions jump conditional on the state of the
flag referre d to by the instruction, e .g.,

BEQ Branch
BNE Branch
BCS Branch
BCC Branch

on
on
on
on

Equal
Not Equal
Carry Set
Carry Clear

Z
Z
C
C

1

o
1

o

7. The CHP compares two bytes (by doing a subtraction without
storing the results). Only the flags are set by the outcome .

Flags CARRY ZERO Signifies
0 0 A < Hem

Va l ue 1 A = Hem
0 A > Hem

A)= Hem

8. Relative addressing mode, used only for branch
instructions, specifies an address relative to the
which uses it, e . g . BNE 03 means branch three memory
forward (see table Appendix 4). The des tination of
instruction is preceeded by an ampersand which
assemb l er that th e addressing mode is re l ative.

instruction
addresses
a branch

te ll s the

9. ALPA handles this addressing for you if you specify branch
labe l s .

5 7

58

Chapter 7
Counting, Looping and Pointing

Counting to control a loop
Suppose we want to multiply two numbers toge ther . There is no
single machine language instruction which can do this, so we
would have to write a program to do it. We cou ld for examp l e ,
add one number to a total as many times as the other number is
large. e . g,

10 A=7
20 T=T+A:REM add thre e times
30 T=T+A
40 T=T+A
50 PRINT " 7'-'3="; T

It wo uld be mu ch easier an d more practica l (especially for
l arge numbers) to do this in a l oo p. e . g .,

10 A=7:B=3
20 T=T+A
30 B=B-1
40 IF B(>0 THEN GO TO 20
50 PRINT "7 '-'3="; T

NOTE: this is by no means the bes t way to multiply two
but we are only intereste d in the instructions
prefe rred method is described in chapter 10 .

numbers,
here . A

Counting using the accumulator
In this short program, unlike any other program we have dealt
with previously, there are two variables. A, wh i c h we are
adding to the total, and B which contro l s the loop. In this

59

case we couldn't stop our l oop as we have done in th e past by
tes t ing the total, because we would have to know th e answer
before we could wr it e the program. Our machine language
program wo uld look, along the l.ine s of what we have done
previous ly, like this:

1 ORC $ i/J6 i/Ji/J
2 PLA
3 LOA #$i/Ji/J

4 STA A
5 LOA #$ i/J 3

6 STA B

7 LOOP LOA A
8 CLC
9 AOC #$i/J7

li/J STA A
11 LOA B
12 SEC
13 SBC #$i/J1

14 STA B
15 BNE &LOOP
16 RTS
17 A OFB $i/Ji/J

18 B OFB $i/Ji/J

Counting using memory
Most of this prog ram co nsis ts of loa ding and storing be tween
the accumulator a nd memory . S ince we so o ft en seem to be
a dding or subtracting th e number one from a val ue as a co unt er ,
or for ot he r r easo ns, there are sp ec i a l commands to do this for
us. INC (Increment Memory) increments t he conten ts of the
addre ss sp eci fie d by one an d put s the result bac k in memory at
the same address . The same goes for DEC (Decreme nt Memory),
e xce pt that it subtracts 1 from memory .

NOTE: INC a nd DEC do not set the carry f l ag - they do se t the
zero flag .

We will now wri t e th e program thus:

NEW
APPEND

2
ORC $i/J6i/Ji/J

PLA

60

3
4
5
6 LOOP
7
8
9
10
11

Program s ummary

Line 2
Line 3 - 5
Line 6 - 9

Line 10- 11

LDA #$03
STA $03FD
LDA #$00
CLC
ADC /f$07
DEC $03FD
BNE &LOOP
STA $03FE
RTS

Ba l ance stack
Initialise
Loop until result of DEC 0
end

Using INC or DEC we can use a ny memory location as a counter,
leaving the acc umul ator free to do other things.

An exercise

Rewrite the previous progam using INC a nd CMP to test for the
e nd of the l oop.

The X and Y registers
There are however even e a sier ways to create count ers than
using INC and DEC . Looking back to Chapter 2, we mentioned
that the 6502 microprocessor had three genera l purpo se
registers - A, X a nd Y. Then for the last few chapters we have
been talking sole l y of the most ge nera l purpose register, the
acc umul ator . So, you may now ask, what are the other ' hands '
of the microprocessor, th e X a nd Y registers for?

a nd what does ' general purpose' mean? Well, so far we have met
one non-ge ne ral-purpose register, the microprocessor status
register (there are another two wh i ch we will meet in future
chapters) . The status byte can only be used to contain status
f l ags a nd nothing e l se, as compared to the accumulator whi c h
ca n hold any number betwee n 0 and 255 representi ng a nything.

The X a nd Y can, like th e a ccumu l ator, hold any number between
o and 255, but there are many functions of the accumu l ator th ey

61

ca nnot do, e . g ., Additi on or Subtrac ti on.
r eg i ste r s a r e extreme l y usef ul as co unt ers .

Th e X a nd Y

They can pe rform the following operations (compa red to t hose we
have a l ready discu ssed for t he accumul ator a nd fo r memory) .

LDA
LDX
LDY

STA
STX
STY

Load
Load
Load

Store
Store
Store

Accumul a tor wit h
X wi th memory
Y with memo ry

Acc umul a t or in
X in memo ry
Y in memory

INC Increment memory

memory

memor y

INX Increment X (Imp li ed a dd ressing mod e)
INY Increment Y

DEC Dec r ement memory
DEX Decrement X (I mp li ed adressing mode)
DEY Decrement Y

CMP Comp are Acc umulat or wit h memory

CPX Co mp are X wi th memory
CPY Compare Y with memory

Using the X register as a counter
We will now write our
r eg i ster as th e co unt er .

NEW
WATCH

mu l tip l ication program
Type i n t he fo ll owing:

(WHAT ADDRESS)? 03FD
AP PEND

1 ORC $0600
2 PLA
3 LDX #$03
4 LDA #$00
5 LOOP CLC
6 ADC 11$07
7 DEX
8 BNE &LOOP
9 STA $03FD
10 RTS

62

using the x

This routine is slightly shorter and considerably faster than
th e orginal but otherwise not a ll that different. Rewrite all
the commands using the X register a nd replace them with the
equivalent Y register commands. Practise using the X and Y
register in plac e of or wit h the accumulator in some of our
previous programs.

Moving blocks of memory
How wou ld you write a program to move a block of
one place to another? For instance to move the
8000 - $8050 to the memory a t $7000 - $7050. Th e
how not to do it:

etc .

LDA $8000
STA $7000
LDA $8001
STA $7001
LDA $8002

memory from
memory from

fo llowing is

This is a ridiculous way to e v e n
memory, because of the size of the
create (However it is the a bsolut e
blocks of memory).

think of
p rog r a m
fastest

moving blocks of
we would have to

method of moving

One possible way of writing th e progra m wou ld be:

LDA $8000
STA $7000

fol lowed by some code which did a two b y te increment to the
address part of the instruction and th e n a loop to go through
the whole block to be moved . This is a n extrem l ey interesting
concept to think about. It is a progra m whic h changes itself
as it funct i ons, it is ca ll e d 'self modifying code' .

But because it changes itself it is very h a rd to use correctly.
It is a l so consid e r e d very poor programming practice to use
because it is prone to e rrors (one mistake in writing or
ca l c ul ations will send your computer crazy and you will
probably have to switch off and back on to recover). Self

63

modifying co de is also extreme ly hard to debug . However, there
can be some advantages, it would be very hard for anyone to
understand this kind of coding (protection) a nd it may be safe
to us e if carefu ll y written a nd well documented.

Se l f modifying code is t herefore obviously
our problem. The answer in fact, li es in
Originally we ca ll ed addressing modes ways
and memory in different formats. We have so

not t he answer to
address ing modes.

of accessi ng data
far seen :

Implied addressing
Th e da ta i s specified as part of the i n struction , e . g., SEC,
DEY.

Relative addressing
Addressing re l at ive to the instruction - used only in branc hes .

Absolute addressing
The data is specifi ed by a two byte a ddress in low byte, high
byte format .

Indexed addressing
Our new method of a ddr essi ng is ca ll ed 'indexe d address i ng' .
It finds the data to be us ed by adding a byte index to the
absolute address specified in the instruction. The indexing
byte is taken from the X or Y register (depending on the
instruction used). The X a nd Y registers are ca l led 'Index
registers ' .

To use our post offic e a nalogy, it is li ke be ing given
pieces of paper, one wit h a two byte address on it and one
a one byte index (0 - 255) . To find the correct box yo u
add the two number s together to obtain the correc t resu lt.
number on the indexing paper may have been c hanged, the
time yo u are asked to do thi s.

Using the X register as an Index

two
with
must

Th e
next

With th is a ddressing mode, our program to move a block of data

64

becomes quit e simp l e . Type th e following:

NEW
APPEND

1
2
3
4 LOOP
5
6
7
8
9

ORC $0600
PLA
LDX #$00
LDA $9C40,X
STA $9C68,X
INX
CPX #$2 8
BNE &LOOP
RTS

NOTE here that the mnemonic form of inde xe d addressing has its
address field made up by the absolute address, a comma a nd the
register us ed as the index, eve n though th e fo llowing is true:

BD409C
B9409C

LOA $9C40,X
LDA $9C40 ,Y

It is th e in s truction, not the address field, which changes in
th e actual mac hine code . RUN the program. As you can see, we
have used th e screen me mory again to show that we have in fact
duplicated a bloc k of me mory. One line on the screen will be
cop i ed into the line be low (the first line onto th e second
line). Be sure to have some text on the first line to see the
effect !

Non-symmetry of commands
If, as was suggested when we introduc ed th e X and Y r egiste rs,
you have substituted th e X or Y for th e acc umul ator in some of
the ear l y programs, you may be wondering if we cou ld do th a t
he re. Th e answer i s no. Not a ll t he comma nd s ca n use a ll the
addressing modes. Neither Y or X (o bviou s l y not X) ca n us e the
index , X a ddress ing mod e being us e d h ere with th e s tor e (STA) .
It is possibl e to do a LDY ADDR,X but not a STY ADDR,X . For a
list of addressing modes po ss ible for eac h instruction, don't
forget Appendix 1.

Searching through memory
We ca n us e the knowl e dg e we have gai n ed up
achieve some interesting t as k s quite simply.

65

to this point
For exampl e ,

to
if

asked to fi nd the fourth occ u rre nc e of a certa in numb e r, e .g . ,
A9 within 255 bytes of give n address , how do we do it ?

The best way is to start simpl y and wo rk yo ur way up.
the first occurrence of A9 we cou l d write:

F\!lFF)

NEW
APPEND

1
2
3
4 LOOP
5
6
7

8
9

116 FOUND

ORG $1661616
PLA
LOY #$1616
LOA #$A9
CMP $F\!l\!l\!l,Y
EEQ &FOUND
INY
ENE &LOOP
RTS (not hav ing found A9

RTS (having found an A9)

We would put a counter program around this routine:

count l oop
LOX #$1616
FIND 'A9'
INX
CPX #$164
ENE count l oo p

We can combine th ese into a sing l e program:

2
3
4
5

6 LOOP1
7
8 LOO P2
9
116
11
12 LOOP3
13
14
15
16

ORC
PLA
LOX
LOY
LOA
CMP
BEQ
INY
BNE
STX
RTS
INX
CPX
ENE
STX
RTS

$1661616

#$ 1616
#$ 1616
#$A9
$F\!l\!l\!l,Y
&LOO P3

&L\!l\!lP1
$\!l3 FD

11$ 164
&LOOP 2
$\!l3FD

66

from

To find

F\!l\!l\!l

In this program, when finished, if X 4, then the fourth
occurence of A9 was at $F000,Y (through RTS at line 16).

If X < 4, there we re not four occurrences of A9 from $F000 to
$F0FF (through RTS at line 11)

Line 14 continues the find routine from
started from the 'CMP ' it would still be
found before. Type:

WATCH
(What address)? 03FD

the 'INY'.
looking at

If it
the A9

ASM and RUN this program. The results will tell you whether
four A9's were found. Change the program to tell you where the
fourth A9 was located (STY $03FD). ASM and RUN it again to see
the result. We will now change a few things to make this
program clearer (as in the ear lier c hapt er) . Type the
following :

NEl-J

APPEND

1
2
3
4
5
6 LOOP
7
8
9
10
11
12
13
14 EXIT

ORC $0600
PLA
LDX #$00
LDY #$00
LDA #$A9
INY
BEQ &EXIT
CMP $EFFF, Y
BNE &LOOP
INX
CPX #$04
BNE &LOOP
STX $033D
RTS

As shown before this program should now be easier to follow.
Type:

Program Summary

Lines 1 - 5
Lin es 6 - 9
Lines 10-12
Lines 13-14

Initialisation
Find 'A9' loop
Counter
End

(Since Y is incremented before it is used, its
value is 1. Therefore the compare instruction
has been set back by 1.)

67

initial
address

index
field

ASM and RUN the program. The WATCH function wil l show you t he
resu l ts the contents of $03FD contents of X number of
' A9 ' s ' found . (The maximum is still 4 - you ca n change this in
line 11 if you wish).

Using more than one Index
index We will now write a program using both index registers to

different data at the same time. Our program will
list of a l l the numbers lower than $38 from $F000

create a
to $F0FF.

Type the fo l lowing:

NEW
APPEND

1
2
3
4
5 LOOP
6
7
8
9
10
11 LOOP2
12
13
14

HATCH

ORG
PLA
LOX
LOY
INY
LOA
CMP
BCS
STA
INX
CPY
BNE
STX
RTS

(what address)? 03FD

$0600

#$,J>r)
#$ FF

$F000,Y
#$38
&LOOP2
$9C40,X

#$FF
&LOOP
$03FD

X here is used as a pointer (inde x) to wher e we are storing our
results . Y is used as a point er to where we are reading our
data from . NOTE here that Y starts at $FF, a nd is incremented
so at the first $A9 the Y register contains zero.

To test for numbers less than $38 we have us e d GMP and BCS (A
) = Mem see Chapter 6) to skip the store a nd increment the
storage pointer instructions. ASM a nd RUN the program.

Zero page indexed addressing
All the indexing instruction s we have used so far have been
indexe d from an absolute address (absolute indexed addressing) .

68

It is also possible to index from a zero page address (see
chapter 2). To rewrite the previous program to look through
the first 256 bytes of memory (0 - 255), all we need to do is
change line 40 to LDA $00,Y. But if you check with the list of
instructions in Appendix 1, th ere is no 'LDA zero page,Y'
only 'LDA zero page ,X'. We have two choices of what to do
here. In practice we would probably continue using the
absolute indexed instruction.

BD 0000 LDA $0000,Y

For the purposes of this exercise, however, we will swap a ll
the usages of X and Y and use the LDA zero page,X. Type:

NEW
APPEND

2
3
4
5 LOOP
6
7
8
9
10
11 LOOP1
12
13
14

LIST

ASM and RUN

ORC $0600
PLA
LDY #$00
LDX #$FF
INX
LDA $00,x
CMP #$38
BCS &LOOP1
STA $9C40,Y
INY
CPX #$FF
BNE &LOOP
STY $0334
RTS

This shows that you must be care ful with yo ur choic e of
regist er s. Alth ough they can do many of the same things, there
are some commands which cannot be done by some registers in
some addressing modes. It is wise to constantly refer to the
list of instructiolls in Appendix 1 while writing programs.

Chapter 7 SUMMARY

1. INC - adds one to the contents of memory at the specified
address.

69

2. DEC - s ubtracts one from the co nt ents of me mo r y a t t he
addr ess s pecif i e d.

3 . Th e zero flag (but no t the carry) is set by t he INC a nd DEC
in str uct i ons .

4 . Th ese a r e mostl y used as l oo p counters to kee p the
acc umul a to r free for oth e r things.

5 . X and Y the micropr ocessor ' s ot her two
regis t ers (the first be ing th e accum ulator),
counters or as index r egis t ers .

ge nera l
can be

purpose
used as

6. Indexed a ddr es sing a dd s the va lue of the register specifie d
to ~he a bsol u te (or zero page) a ddress used to ca l cu l ate the
f in a l address of the data to be used .

7. Ma ny of th e instructio ns are simil ar if use d on A, X or Y,
but ther e a r e certain in s t r uctio ns a nd a ddressing modes which
a r e not ava il a ble for eac h reg ister . Wh e n wr iting programs ,
ma ke sure th e instructi ons yo u are trying to us e exist in the
format yo u wish to us e th em i n!

70

Chapter 8
Using Information Stored in Tables

One of the major us es of index registers is th e looking up of
tabl es . Tables may be us ed for many reasons - to hold data, to
hold add r es ses of various subroutines , or perhaps to aid in th e
complex conversion of data from one form to another .

Displaying characters as graphics
One such conversion , for which th e re is no formula that can be
used, is the conve rsion from screen co d e to the shape of the
character displayed on the screen. Normally this done by th e
comp u ter ' s hardware and we do not have to worry abo ut it. When
we are in graphics mode, howeve r, this part of the comput er 's
hardware is turned off. In normal character screen mode, our
post office boxes within screen memory display through their
' glass ' fronts the character wh i ch corres ponds to the number
stored in that box.

That is, we are seeing what is in the box through some sort of
'filter ' which converts each numb e r into a different shape to
display on the screen . In graphics mode, this 'filt er ' is
taken away and what we s ee is each bit (finger) of each number
stored throughout scree n memory . For eac h bit in each b yte
that is turned on, there is a dot (pixel) on the screen.

I n other words the byte $11 which l ooks like '00010001' wo uld
be displayed on the screen as eight dots, three black dots
followed by one white dot, followed by thr ee black dots,
fo l lowed by one whit e dot. De pe nding on your television, you
may b e ab l e to see the dots making up th e c haracters on yo ur
screen. Each c haracter is mad e up by a gr id of eight dots wide
and eight dots hi gh. Since we have just determined that we can
display eight dots on th e screen using one byte, it follows
that to displ ay one character e i g ht dots wide by eight dots
high, we would need to us e e i gh t byt es one on top of th e next.

71

For exampl e a c har acter wou ld l ook like :

8 X 8 pixel grid binary byte
equivalent

hexadecimal byte
equivalent

o
1
2
3
4
5
6
7'--'---'---'--'----L-.l...-.I.-..J

00011000
00100100
01000QJ10
01111110
0100flJ010
01000QJ10
01000QJ10
0000QJ000

Graphics memory

18
24
42
7E
42
42
42
o

Th e memory as displayed in graphics mod e 8 runs straight across
the screen. Each byte represen t s e i g h t pixels horizontally and
th e r e is 40 byt es to a row. In the c harac t er mod e we s aw that
th e sc re e n me mor y started at $9C40, $9C4 1 next to that, $9C42
nex t to that a nd so on to the end of th e first row. In
g r a phics mode 8 the characters are displayed as follows; the
top l ef t hand corner of the screen i s at $8150, $8151 is
directly opposite a n d $8177 is at the end of the line. The
n ex t row of pixel s down star t at $8178 ($8150+$28) , th e nex t
row down a t $8 1A0 ($8150+$50) a nd so on down to the end of
graphic memory at $9F4F.

In this way th e screen me mory is defined one line
time (forty bytes horizontally) across the screen.
same for a ll 192 rows positions down the screen.
there can be forty bytes by e ight bits (40 x 8
ac ro ss the screen.

S8150 $8 151 $8176

S8178 $8 179 $819E

$81AO $8 1Al

$81C8

S81FO
320

$8218

$8240

$8268 192

I $9F4D I $9F 4E

72

block at a
This is the

This means
320 pixels)

$8177

$8 19F

$81C7

$8 1EF

$82 17

S823F

$8267

$828F

I $9F4F I

The entire scree n in graphics mode 8 is 320 x 192 pixels a nd
takes up 320 x 192 / 8 = 7680 bytes of memory (this is for a
full graphics mode not a mixed text and graphics). The
starting point of the screen in both graphics and character
mode can be c hanged to suit the programmer (see Appendix 6).
It is possible to see the BASIC program ALPA on the screen as a
series of dots. It is vitally important that we do not
overwrite ALPA while drawing on the scree n .

We have shown that the shape of the
represented by a string of eigh t byt es .
that the first eight bytes of screen
character position. Therefore by putting
into those eight bytes, we cou ld make an A
in the top l eft hand cor ner .

character
We have

A ca n be
a lso shown

memory make up one
those eight values

appear on the screen

Copying the character sets
from ROM
Type in the following program. It will copy some of the
character sets down from character memory to where they ca n be
more easily used. Don't worry about the inst r uctions here not
yet covered. Executing this program as it presently stands
won't change a nything .

NEW
APPENO
1 ORC $0600
2 PLA
3 LOA #$00
4 STA $CB
5 STA $C O
6 LOA #$90
7 STA $CC
8 LOA #$E0
9 STA $CO
10 LOOP1 LOY #$00
11 LOOP2 LOA ($CD),Y
12 STA ($CB),Y
13 INY
14 BNE &LOOP2
15 INC $CC
16 INC $C£
17 LOA $CE
18 CMP #$£3
19 BNE &LOOPl
20 RTS

NWATCH
AS~1 and RUN this program .

73

You now have a copy o f the ROM character set starting at RAM
memo ry location $9000. On l y the first 12 8 characters hav e been
copied by this routine .

We wi ll now add to the e nd of the l as t program to de fine our
own characters. At the mome nt th e r e is a co py of the
characters in RAM but the video chip i s still fetching it's
c harac t er de finitions from ROM . We must t e ll th e vi deo chip to
start getting it's definitions f rom RAM. To do this we lo ad
memo ry locat i on 756 decimal wit h the page of the c haracter set.
A page in 6502 is de fin e d as 256 byt e s. The definitions in RAM
ca n the n be changed to s uit us. Add these lines to the en d of
your last prog ram. De l e t e the l ast line from your program and
Type:

AP PEND

20 LDA #$ 90
21 STA # $02F4
22 LDA #$FF
23 STA $9000
24 STA $900 1
25 STA $9002
26 STA $9003
27 STA $9004
28 STA $9005
29 STA $9006
30 STA $9007
31 RTS

ASM and RUN thi s prog r am.

We now have our characte r set starti ng a t $9000
has been r e de fined a s a so l id block of pixe l s .
orgina l characte r set press RE SET a nd GOTO
ro utine rep l ace s th e pointe r to t he ROM routi ne .

a nd our s pace
To put back th e
12 . The RESET

Indirect indexed addressing
There wi ll be some cases where yo u may be un s ure as to which
table you wa nt to find yo ur dat a in. In ot he r words, imagi ne a
program which l ets you deci de wheth er yo u wa nt e d to print the
message in upper or lowe r case l e tt ers af te r th e program ha d
run . You wi ll want to us e one of t he t wo t a bl es decid e d on
midway through th e pr og r am. This could be done by two nea rly
identica l prog rams, each acce s s ing a different table in memory
a nd ha ve t he be ginning of th e program decide whi c h one to us e .
Of course , this wou ld be wastefu l of memory .

74

To access data using this method, th ere is an addressing mode
called indirect indexed addressing, which allows you even
greater flexibility as to where you place your data. Indirect
innexed addressing is similar to absolute indexed addressing
exce pt that the abso lute address is not part of the instruction
but is he l d in two successive zero page locations pointed to by
the indirect indexe d instruction. In other words, the contents
of the zero page a ddr ess pointed to by the indirect indexed
instruction, is the low byte (of a low byt e - high byt e pair)
that contains an address which is indexed by the index register
Y to obtain the final a ddress. (Indirect indexed addressing is
a lways indexed using the 'Y' register).

Imagine th e following situation using our post office box
analogy. You are hand e d a n instruction to look in a box (zero
page) . The number you find in that box and the box next to it,
go together to make an absolute ad dress (low byte high by te
format) . You are then told to add an ind ex (Y) to this address
to find the a ddress you are looking for.

The mnemonic for this instruction is QQQ
instruction of the form, LDA. ZP is a
address and the Y is outside the bracket
indirection is t ake n first, and the index
the following examp l e program:

NEW
APPEND
1 ORC $0600
2 PLA
3 LDA #$00
4 STA $CB
5 LDA #$E0
6 STA $CC
7 LDA #$40
8 STA $CD
9 LDA #$9C
10 STA $CE
11 JSR COPY

12 LDA #$00
13 STA $CB
14 LDA #$E1
15 STA $CC
16 JSR WAIT
17 J SR COPY
18 RTS
19 COPY LDY #$00
20 LDX #$FF
21 COPYA LDA ($CB),Y
22 STA ($CD),Y

75

(ZP),Y where QQQ is an
one byt e zero page

to signify that the
a dd ed lat er . Type in

23 INY
24 OEX
25 BNE ©A
26 RTS
27 HAIT LOY #$ FF
28 HAITA LOX #$FF
29 HAITB OEX
30 NOP
31 NOP
32 BNE &HAITB
33 DEY
34 BNE &HAITA
35 RTS

This program will copy part of the ROM data to the screen, wait
for a second and th e n copy some other ROM data to the scree n.
The subroutine COPY will move any page to any other page. It
is only necessary to change the pointer to the souce in $CB-$CC
and the pointer to the destinGtio~ in $CD-$CE and call the
r outine . The beauty of indirect Y is that it can make a
subroutine totally genera li zed. By just changi ng some zero
page locations, pointers ar e changed and a subro utine can use
tot a lly different dat a . The instruction NOP doesn't do
anyt hing, it just takes a certain amount of time to exec ute
and is used as a time delay .

To c ha nge the data that is be ing displayed change the
pointers on lines 3,5 ,1 2 and 14. Needless to say the
Y instruction is incredibly us eful, however it must
with discretion There are only 256 zero page
lo cations .

Register transfer instructions
In the last program we used an instruction that you
previously met - TAY (Transfer A into Y). This is only
a grou p of quite simp l e instructions to transfer the
of one register to a nother.

The ava il a bl e i nstructions are:

TAX (Transfer A into X)
TAY (TI:ansfer A into Y

TXA (Tra nsfer X into A)
TYA (Transfer Y into A)

76

source
indirect
be used

memory

haven't
one of

contents

These instructions a re used
performe d on a counter or
manipul a tions th at must be don e
returned to the index register .

main ly
index

in th e

when the operations
require mathematical
accumulator and then

NOTE:th e re is n o instruction to transfer betwee n X and Y. If
nece ssary this must be don e thro ug h A.

There are two addressing modes that we have not yet covered
which we will bri e fl y touch o n here . The first is cal l ed
Indexe d Indirect addressing . No, it is not the one we have
just covered, that was th e Indirec t Indexe d a ddressing. The
order of the words exp l ains the order of the operations.
Previously we saw indirect indexed in the form, QQQ (ZP),Y,
wh e re.the indirec tion was p e r forme d first followed by th e
indexing.

In indexe d indirec t QQQ (ZP,X), the index ing is done first to
ca l cu l ate the zero page address which cont a ins th e first byt e
of a two byte address (low byt e - high byte format), this is
the eve ntual destination of the instruction.

Imagi n e that you had a table of addresses in zero page. These
a ddress es point to dat a or seperate tabl es in memory. To find
the first byte of thes e tables you would use this in struction
to inde x through the zero page table a nd us e the correct
address to find the d a ta from the table yo u were looking for.
In terms of post office box e s, we are saying h ere is the number
of a post offic e box (ze ro page) . Add to that address the
value of the ind ex ing b y t e (X r eg ister). From th a t calc ul ated
add r ess, and from the box ne xt to it (low byte - high byte), we
create the address whi c h we will us e to loca te the data we want
to work on.

Indirect addressing
The la st
absolut e
indirect

addressing mode we wil l
addressing. Ther e is o nl y
addressing a nd that i s th e

cover is called Indirect
one instruction which uses
JMP command.

The JMP using abso lut e a ddr e ssing 'Jumps' the program to the
address specified in th e instruction (like GOTO in BASIC).

In indirect addressing, 'JMP (address)' , the two byt e
(absolut e) address within the brac k e ts is used to point to an
address anywhere in memor y that holds th e low byte of a two
by te address, which is the destinat i o n o f the instruction . In
other words, th e instruction points to a n address th at , with
the next address in me mory, specifies th e destina tion of the
Jump. In post office box terms, this mea n s th at yo u ar e handed

77

th e number of a bo x . You l oo k a t th e box a nd the
it to pi ece together (l ow byte - hi gh by t e forma t)
that the JMP instruc tion will us e .

one ne xt to
the addre ss

The major us e of t h is instruct i on i s known as vec tor e d input or
output . For exampl e if yo u write a prog ram that jumps directl y
to th e ROM output c ha r ac t er address to prin t a ch arac t e r, a nd
th e n you wish output to be direc t e d to disk, you would have to
change th e JMP inst ruct ion. Using the vec t ore d output, the
p rogram do e s a JMP indirect on a RAM memory loca tion. If th e
di s k opera ting sy stem is t o l d to take control of output, it
sets up the vec to r l oca tions so a JMP indir ec t wi ll go to its
programs. If output is directed to the screen those l ocations
wi ll ho ld th e address of th e RO M printi ng routines, a nd yo ur
program will output through there.

Below is a list of the a dd ress ing modes ava il ab le on the 6502
mi c roproces so r.

Implied QQQ
Absolute QQQ a ddr
Zero Page QQQ ZP
Immedi ate QQQ # byt e
Relative BQQ Byte - (L# from ALPA)

Abso lut e ,X QQQ a ddr, X
Absolute,Y QQQ a ddr,Y

Indexe d
Zero Page ,X QQQ ZP,X
Ze r o Page ,Y QQQ ZP,Y

Indirec t Indexed QQQ (ZP), Y
Indexed Indirec t QQQ (Zp,X)
Indirec t JMP (a ddr)

also
Accumul a tor QQQ A

(An operation perfo rme d on the acc umul ator, see Chapter 10).

Chapter 8 SUMMARY

1. In graphics mod e 0 the scree n i s orga nize d as 24 lines of
40 c haracc ers . Ea c h line i s orga ni ze d as a se quenti a l portion
of memory.

2. Characters are def ined wit h i n a n 8 x 8 pi xe l grid.

78

J . Screen memory in graphics mode 8 runs across t he screen in
l ines of bytes a nd th e n down th e scree n row by row .

4. The no r ma l charac t e r set is stored in ROM a t $E000, but can
be copied t o RAM and altered.

5 . Index r egis t ers are us e d to l ook up tab l es (among other
things) , using seve r a l indexe d ad dr essi ng modes.

6. In normal indexed a ddr essi ng , th e index
to a n a bsolut e (or zero page) ad dress
dest ination ad dress .

r egister is added
t o calculate th e

7 . In indirect indexe d addressi ng, th e destination
ca l c ul a ted by a dd i ng th e cont e nts of t he Y regist e r
byte add r ess stored in zero page locations pointed
one by te address in t he instruc tion.

8 . In indexed indirect addressi ng,
ca l c ul a t e d by a dding the X register to
which forms pa rt of th e instruction .

th e eventua l
th e zero

a ddress is
to to th e 2
to by th e

a ddress is
page address

9 . TAX, TAY , TXA a nd TYA are used to t ra n sfe r data betwee n th e
in de x registers a nd the accum ul ator .

10 . Indir ec t a bso lut e addressing is for JMP only and uses th e
co nt ents of two bytes (next to each other), a nywh ere in memor y,
as the destinatio n a dd ress for the jump.

79

80

Chapter 9
Processor Status Codes

We mentio n ed in Ch a pters 5 and 6 the concept of flags with i n
the microprocessor . We talked about th e carry flag a n d t h e
zero f l ag, and we d i scussed th e branc h instructions and ot her
i n structions associated with th e m, e . g . , SEC, CLC, BCS, BCS,
BEQ and BCC. We said that these f l ags along with severa l
ot hers , we r e stored i n a special purpose register wit h i n t he
microproc e ssor ca l led the proces sor status code register or,
s impl y t he status regist e r . This r e gist e r is set o u t l ike a n y
othe r reg i ster or byte in memory, wi th eigh t bits (fi n gers) .
Each bit r e presents a f l ag for a diff e re n t p u r p ose:

7 6 5 4 3 2 1 ~
I N I v i BID I Z c i

IOVER~Lowl B*REAKI
J I '\
INTERRUPT CARRY

+
NEGATIVE BLANK DECIMAL ZERO

(UNUSED)

A list of whic h instru c tions set which fl ag s can be seen i n the
tabl e i n Appe n dix 1.

1. The carry (C) flag, as we have a l ready s ee n , is set o r
c l eared to indicat e a ' car ry' o r ' borrow ' from the e igh t h bit
of th e byt e i n to th e 'ninth' bit. Si nce the re is no n i nt h b i t ,
i t goes i n to t h e car r y to b e inc lu d e d i n f u ture ca l cu l ation s or
ignored . Th e carry can b e set or cleared usi n g SEC a n d CLC
r es pec tive l y . A progra m c an test for car ry set or c l ea red
us i ng BCS or BCC r e spectively.

2. Th e zero (Z) f l ag, as we have a l ready seen is set or
cleared dep e nd i n g on th e result of some operations , compa r ison s
or tr a nsfers of d a ta (Load or S to re) . A program can test for
zero se t or c l eared by u s ing BEQ or BNE respectively .

3 . Setting the break (B) f l ag, usi ng th e BRK
wha t is known as a n int errupt . Mor e wi l l

81

command c a uses
b e said a bo u t

interrupts in Chapter 11. Using a BRK will cause your machin e
l ang uage program to stop a nd the comput er to jump indirect on
the contents of $FFFE an d $FFFF. Thes e ROM address es hold the
a ~ dress of a break routine which will r e turn you to BASIC.
Using the BRK command is a very ef f ective way of debugging a
program.

By inserting this command into your p rog r am at s pecific points,
you wi ll be ab l e to trace (by whether th e program stops o r
hangs) how far a program is getting befo r e it do e s th e wrong
thing . The BRK command gives you th e c hance to s top a progr am
and t est the vari a ble s in memory to see if they hold the va lues
you would expect a t this point in th e program. Use th e BRK
command with one of the programs from this book to prac ti se
using it as a debug g ing tool.

4. The int e rrupt (I) flag, may be set or c l eared use
CLI respectively. When set, th e int e rrupt fl ag wi ll
certain types of interrupts from occurring (see Chapt e r

SEI or
disabl e

11) .

5. The decima l (D) flag , may be set or c l eared using t he SED
and CLD commands r e sp ect ive ly. When the dec ima l flag is set
the microproccesor goes into deci ma l or BCD mode . BCD stands
for Binary Coded Dec imal a nd is a method of r e presenting
dec imal numb e rs within the computer's memory. In the BCD
representation, hexa decima l digits 0 9 a r e read as their
decimal equiva l ents and the di g its A - F ha ve no mea ning . In
other words:

BC D REPRESENTATION

Binary Hex Dec imal va lue of BCD

00000000 00 0
00000001 01 1
00000010 02 2
00000011 03 3
00000100 04 4
00000101 05 5
00000110 06 6
00000111 07 7
00001000 08 8
00001001 09 9
00010000 10 10
00010001 11 11
00100010 22 22
01000011 43 43
10011000 98 98

82

This shows that there are six possibl e codes between the values
of 9 and 10 which are wasted .

In decimal mode the microprocessor automati cally adds a nd
subtracts BCD numbers, e .g.

Dec imal Flag = 0
17

+26

3D

Dec imal Flag = 1
17

+26

43

The problems with decimal mode are that it is wasteful of
memory and is very slow to use math ematica lly (apart from adds
and s ubtracts). On the whole it is easier to use hex and
convert for output, and so decima l mode is rarely used. Try
converting some of the programs in this book to decimal mod e
and compare their output to normal ca l cu l ation s.

6. The negative flag . So far we have said that the only
numbers that could be held within a single byte were those
between 0 and 255. We have talked about dealing wit h numbers
greater than 255 by using two bytes, but we have not mentioned
anyt hing about numbers less than zero. We h ave used them
without rea l ising it in Chapter 6. We have seen from our use
of numbers 0 to 255 to represent anyth ing from numbers to
addresses, from characters to BCD numbers, that the
microprocessor wi ll behave the same no matter how we use these
numbers. The memory might be a character an address or a n
instruction, but if we add one to it the microprocessor wi l l
not care what it is we are representing. It wil l just do it
blindly.

In Chapter 6 we took our number between 0 a nd 255 and c hose to
use it as the value of a relative branch; we chose $00 to $7F
as a forward (positive) and $80 to $FF as a backward (negative)
branch. This numbering system is pure ly arb itrary but, as it
turns out, it is mathematically sound to use it to represent
positive and negative numb ers. The system we use is called
Two's Comp l ement Arithmetic. We can use the tables in Appendix
3 to convert between normal numbers and Two's Compl emnt
numbers, looking for the number in decimal in the centre and
finding the correct two's complement hex va lue on the outside.
Mathematically, we take the comp l ement of the binary number
(all l's become 0's and a ll 0 ' s become l ' s) and then add 1,
e . g. ,

3 =
COMPLEMENT

o 0 0 0 0 0 -> '-11 '-11'-11--'1---'1 1-1 -'-11-'10--'1---'01
+ 1

1111111111111~111
83

FD -3

Us ing thi s re presentation, yo u will see tha t a ny by t e whos e
va lue is grea t e r th a n 12 7 (wit h i ts hi gh bit , b it 7 t urne d on)
r ep resent s a ne ga tive number , a nd a ny va lue l ess t hat 128 (high
bit turne d of f) r e prese nt s a pos itive number .

1 X X X X X X X
o X X X X X X X

NEGATI VE
POSI TI VE

Th e negative fla g in the s t a tus reg ister is a utomati call y se t
(l i ke the zero fl ag) if a ny number used as th e r es ult of a n
o pe r a tion, a c omparison or t ra nsfer, i s negative . Sinc e th e
mi c r oproces s o r canno t t e ll i f t he val ue i t i s dea ling with
repr e s e nts a numb e r , c ha r ac t er o r a ny thing e l se , it a l wa ys s ets
th e negative fla g , if the h igh bit of t he by t e be ing used i s
se t. In othe r words, the nega tive f l ag is a l ways a co py of bit
7 (high bit) of t he res ul t of a n operat i on.

Si nce th e hi gh bi t o f a by t e i s a s i gn bit (r e presenting th e
s i gn o f th e numb e r) we a r e l ef t wi t h onl y seve n bit s to s t o r e
th e ac tua l numb e r. With seven bi ts you can r e present a ny
numb e r be t wee n 0 a nd 127 bu t , since 0 = -0 on the n ega tive sid e
we a dd one . So two ' s compl ement numb e r s can represent a ny
numb e r f r om -128 to +127 usi ng one by t e.

Le t' s t ry some mathema ti cs us ing our n ew number ing system.

Two's Complement Binary Decimal value

Positive + Positive (no different no normal)
001JJiJXlJ111 + 7

+00001001 ++ 9

00010000 16 C=0V=0N=0

Positive + Negative (negative result)
00000111 + 7

+ 11110100 + -12

11111011 - 5 C=0V=0N=1

Positive + Negative (positive result)
00000111 + 7

+11111101 + - 3

(1)00000100 + 4 C=1V=0N=0

Positive + Positive (answer greater than 127)
01110011 115

+ 00110001 + 49

10100100 -92 C = 0 V = 1 N = 1

NOTE: this answer is wrong!

84

Two ' s comp l eme n t nu mbering system seems to h a n d l e po s i ti ve a nd
nega ti ve numbers we ll, except in ou r l as t exampl e . We sa id
prev i o u s l y t hat t wo ' s compl e me nt could onl y h o ld numbers f rom
- 128 to +127 . Th e a n swe r to o u r qu es t io n s hould h a v e bee n 164.
As in Chap t er 3 , to ho ld a number grea t er t h a n 255 we n ee d t wo
b y t es , here a l so we mu st u se two bytes . I n n orma l b inary a
car r y from b i t 7 (hi g h bit) i n to t h e h igh by t e was do n e th ro ug h
th e carLy . In t wo ' s comp l e me nt we ha ve seen sev e n bi ts a nd a
sign b i t so th e h igh bit is b it 6 . Th e mi croproces sor , not
k n owing we a r e u sing two ' s compl eme n t ar i t hmet i c , h as as u s ua l
' ca r r i ed ' b it 6 in t o bit 7 . To e n ab l e u s t o correct t hi s , i t
has s et th e o ve Lf l ow f l ag to tell u s th is h as h ap p e n e d.

7. Th e over fl ow flag . This f l ag is set b y a car r y from b it 6
in t o bit 7 .

7 6 5 4 3 2 1 Ql

e.g. /Ql/1/1/1/ 11111/ 11 + I Ql IQl IQl IQl IQlI QlI Ql l11 = /1I Ql IQlI Ql IQl I Ql I Ql IQl I
127 + 128

Th e ma j o r
accidenta l
comp l e me nt
of s i gn s,
(i nverted)

us e of t h e overf l ow f l ag i s in s i g na lling th e
cha n ge of sign caused by a n ' ove r f l ow ' usin g t wo ' s
a ri t hmet i c . To corLect for ~his acci d e nt a l c ha n ge

th e s i g n bit (bit 7) must be be c ompl e me nt ed
a nd a o n e carrie d o n to t he h igh bit if n ecessary .

Thi s wo ul d ma k e o ur p revio u s l y wrong res ult
become 1 x 128 (high b yte) + 36 (00 100100) .
wh ich is t h e cOLrect a n swer .

of - 92
128 +

A p r ogram can test fOL t he n egative f l ag be ing se t
using BM I (Branc h o n Mi n us) or BPL (Br a n c h
res pect i ve l y .

(0 100100)
36 164

or clea r ed
o n P lus)

A p r ogram ca n t es t for the oveLf l ow f l ag be ing set o r c l eare d
usi n g BVS (B r anc h on Overflow Set) o r BVC (B r anc h o n Overf l ow
Cl ear) res pec t ive l y . Th e overflow f l ag ca n b e c l ea r e d us ing
t he CLV comma nd.

Chapter 9 SUMMARY
1 . The mi c Lo p rocessor conta in s a spec i al p urp ose reg ist er , the
processoL stat u s co d e register .

7 654 321 Q)

I N l v l - IBI D lll z l c l

rJ,1 II \ . "' ''
OVERFL~W BREAK I N~ERRUPT,CARRY

NEGATIVE B~ANK DECIMAL "'ZERO
(UNUSED)

85

2. CARRY - SEC, CLC
BCS, BCC

3. ZERO - BEQ, BNE
Set if a result or transfer = 0.

4. BRK is an instruction which sets the break flag and halts
the microprocessor (useful for debugging purposes).

5. INTERRUPT - SEI, CLI
See Chapters 11, 12.

6. DECIMAL - SED, CLD
Sets decimal mode. Addition and subtraction are done using BCD
(Binary Coded Decimal).

7. Two's Complement numbering represents numbers from -128 to
+127.

negative X = (complement (X» + 1

8. NEGATIVE - flag set if bit 7 of result is turned on (=1)
BMI, BPL

9. OVERFLOW - set on two's complement carry
CLV
BVS, BVC

86

Chapter 10
Logical Operators and Bit
Manipulators

Changing bits within memory
instructions

they are
They are

commands
Exclusive

In this Chapter we will be looking at a group of
unlike any we have looked at previously, ye t
absolutely fundamental to the workings of a computer .
the ' logical' or 'Boolean' operations. They are the
AND (Logical AND), ORA (Logical OR), and EOR (Logical
OR) .

Thes e functions can be built up using fairly simple circuitry,
and almost all functions of the computer are bui l t up by series
of these circuits . The logical operations of these circuits
are available to us through these instructions and it is this,
and not the hardware, with which we will concern ourselves in
this chapter.

We know th a t byt es of memory and the registers are made up of
groups of eight bits:

I I I I I I I I I

To exp lain th e functions of th ese instructions, we l ook at
th e ir operation on one bi t and then as sume that this operation
is done on a ll e ight bits at once. A logica l operator is like
a mathematical function in that it takes two pieces of data and
outputs the r es ult as a single pi ece of data , e.g.,

4 + 5 9

In this case howeve r the data coming in is going to be Single
or 0's. To def ine a logical function we

showing a ll possible inputs and the
bit values, either l's
draw up a truth table
associated outputs.

87

~ 0 1
INPUT 2

OUTPUT OUTPUT

0 FOR FOR
0,0 0, 1

OUTPUT OUTPUT
1 FOR FOR

1 , 0 1, 1

The logical AND
The first in struction we will deal with is the AND instruction.
This performs a logical AND with th e acc umulator a nd the
specified memory, l eavi ng the result in A. The result of a
l ogical AND is 1 if inp ut one is a 1 and input two is a 1. The
truth table for this function l ooks like :

AND

~ ACCUM ULATOR
0

0 0

1 0

When extended to an eight bit byt e this mea ns that:

AND

10111110111011111
11101111111011101
1 01 0 11 1 0 11 1 0 11 1 0 1

1

0

1

The zero flag is set if the res ult = 0, i.e. if there are no
coincident ones in the bits of the two bytes used.

Th e AND instruction is useful in creating a 'ma sk ' to turn off
certain bits within a byte. Suppose, within a byte of any
value, we wish to turn off the 3rd , 5th and 6th bits. We would
create a 'mask' with only the 3rd, 5th and 6th bits turn ed off
and AND this with the byte in question.

88

7 6 5 4 3 2 1 0
Mask= 11101011101111111 =$97

AND #$97

would turn off the 3rd, 5th and 6th bits of whatever was in the
accumulator.

The logical OR
The second instruction we will look at is the ORA instruction .
This does a logi cal OR of the accumul ator with the specified
memory leaving the result in the accumulator. Th e OR function
outputs a 1 if input one is a 1 or input two is a 1. The truth
table for this function looks like:

OR _________ MEMORY
0 1 ACCUMULATOR ______

0 0 1

1 1 1

When extend ed to an eight bit byte this means that:

ORA o 0 1 11 1 1 0 1 1 0\
o 1 1 11 1 1 0 11 01

The zero flag is set if both bytes are equal to zero and hence
the result is zero .

The ORA instruction is useful for turning on certain bits
within a byte using the masking technique .

Supposing we want to turn on the 2nd, Jrd a nd 7th bits within a
byte. We wou ld use a mask with onl y th e 2nd, Jrd and 7th bits
turned on.

Mask

ORA

7 6 5 4 32 1 0

11101010111110101
#$8C

$8C

would turn on th e 2nd, 3rd a nd 7th bit s of whatever was in the
accumulator .

89

The logical Exclusive OR
The l ast of t he logical operations is the EOR. This pe r forms a
l og i ca l exc lusive OR of t he accumu lator a nd memory l eavi ng t he
re sult in A. Th e exc lu sive OR f unction outp uts a 1 if inpu t
one i s a 1 or inpu t two is a 1 bu t not i f bot h are 1. The
truth t a bl e f o r thi s f unction l oo ks like :

EOR
~MORY
ACCUMULATOR _____

fJJ 1

fJJ fJJ 1

1 1 fJJ

Whe n extend e d t o a n eigh t b i t byte t he exc lusive OR produces :

111fJJI111111fJJI0111
EOR 1 11 fJJ 111 fJJl fJJ 11 1011 1

= 1 fJJlfJJlfJJI11111101fJJi

Th e exc lu sive OR i s used to complement (invert) bit s wit h i n a
by t e u s i ng mask ing.

To invert the 1s t, 2nd and 4t h b its of a byte we wo ul d use a
mas k with t hose bi ts turned on

7654321fJJ
Mask =1 0101fJJI11fJJI1111fJJi $16
EOR #$16

wo uld invert t h o s e b its of the accumu l a t or.

Ty pe th e fol l owi ng
i ns t r uct i on s :

NEW
APPEND

1
2
3

program into

ORC $0600
PLA
LDA #$CA

90

ALPA to test these

4 AND #$9F
5 STA $03FD
6 LOA #$A2
7 ORA #$84
8 EOR $03FD
9 STA $03FD

10 RTS

WATCH
(What address)? 03FD

Program summary

Lin e 3 LDA #$CA A $CA 11001010
Li ne 4 AND #$9F A $8A 10001\1110
Li ne 5 STA $03FD A $03FD 10001010
Line 6 LDA #$A2 A $A2 10100010
Line 7 ORA #$84 A $A6 10100110
Li ne 8 EOR $03FD A $2C 00101100

ASM and RUN this program

and verify the resu l ts with those we have reached .

The bit instruction
There is a usefu l instruction in the 6502 instruction set which
performs an interes ting set of t es ts and comparisions . We
d i scussed i n Chapt e r 6 how a CMP command did a subtraction
setting the s t atus flags but not storing the r es u l t. Similarly
BI T (compare memory bits with t he accumul ator) performs a
logic a l AND of A with memory setting only th e Z f l ag as a
resu l t . The bit instruction also copies bit 7 in t o the
negative flag and bit 6 into th e ove rflow flag .

Rotating bits within a byte
We wi l l now discuss four oth e r bit manipu l ation instr uctions
and some of their cons e qu e nc es . Th e first instruction we wi l l
look at is ASL (Arithmetic Shift Left) . This instruction
shifts a l l the bits in the specified byte l eft by one bit,
i n troducing a zero at the l ow e nd and moving th e h igh bit into
the carry flag .

91

CARRY 7 6 5 4 321 0

c::=J '--F1~~~il~~ ~0
hence

C =?

becomes

C = (fJ

and

C =?

becomes

C = 1

Back in Chapter 3 when we exp l ained hex and binary we mentioned
that each bit had a value of 2 to the power of position -1

You wi ll notice that the value of each box is two times the

value of the box to the right of it, hence:

!/J!/J!/J!/J!/J!/J!/J1 x 2
!/J!/J!/J!/J1!/J!/J!/J x 2

and furthermore

!/J!/J!/J!/J!/J!/J1!/J and
!/J!/J!/J 1 !/J!/J!/J!/J

!/J!/J111!/J!/J1 x 2 !/J111!/J!/J1!/J

Th e operation required to multiply any byte by two is the
operation performed by the ASL instruction.

To use our examples from before:

C = !/J1!/J1!/J1!/J1 ($55) x 2 -) C !/J 1!/J1!/J1!/J1!/J ($AA)

C = 1!/J11!/J11!/J ($B6) x 2 - > C !/J11!/J11!/J!/J ($6C+CARRY)

92

Type in the following program:

NEW
APPEND

1
2
3
4
5
6

WATCH

ORC
PLA
LOA
ASL
STA
RTS

(What address)? 03FD

ASM and RUN

Hl600

#$0A

$03FD

Line 4 uses the 'accumulator' addressing mode. It use s th e
contents of the accumulator as data and returns the data there.

NOTE: this is different to implied addressi ng because ASL may
be used on data from memory.

We can use this instruction to multiply a number by any power
of 2 (1,2,4,8 ...) . To use the previous program to multiply by
eight instead of two, i nsert the fo ll owing two lines:

1 ORC $0600
2 PLA
3 LOA #$0A
4 ASL
5 ASL
6 ASL
7 STA $03FD
8 RTS

ASM and RUN the program with these alterations:

$0A x 8 = $50

Rotation with carry
As wit h our addition routines, we may find we want to
numbers greater than 255 (two or more byte numb ers) .

93

multiply
To do

this there is a shift command which uses the carryon the input
e nd of the s hift as we ll as the outpu t e nd:

The in structi on to do t h is is ROL (Rotate One bit Le ft) . To do
a two byte multiply by four, typ e in th e fol l owing l ines :

1 ORC $0600
2 PLA
3 LDA #$17
4 STA $03FE
5 LDA #$ 0A
6 ASL
7 ROL $03FE
8 AS L
9 ROL $03FE
10 STA $03FD
11 RTS

LIST

NOTE:
1. To avoid swapping registers we have us ed ROL abso lut e
stores its result bac k in memory .

2. We have ro tat ed both bytes once a nd t he n rotated
agai n. Rotating the l ow byte twic e a nd th e n th e high
twi ce would no t work, bec ause the hi gh bit fro m the low
would be l os t whe n th e carry was us e d in th e second ASL.

ASM
WATCH
(What Addre ss)? 03FE
RUN

whic h

both
by t e
byte

Put toge ther the h igh and low byt es of th e answe r and check
t hat i t eq ua ls f our times the origina l number .

Rotating to the right
LSR and ROR are th e e quival e n t instruc tions to AS L a nd ROR,
e xcept that they s hift th e bits i n the o pposite direc tion.

94

LSR 7 6 5 4 3 2 1 f/J CARRY

f/J---f1>I, FFFFFFFr- D
ROR 7 654 321 0

CI~JII~
Just as their opposites can be thought of as multiplication by
two , so thes e ca n be thought of as division by two, and can be
simi l arly extended to mu l ti -byte arit hmet i c . After division
the number left in th e byt e is the integer part of th e result
a nd the bits tha t h ave be en shifted o u t r epresent the
r emainder, e . g . ,

$10 -;-. $08 3 remainder 5

00f/J11101 29 remainder
LSR -;-.2

0QlOOll10 14 1 = 1
LSR -;-. 4

f/J0000111 7 -> 01 = 1
LSR -;-.8

f/JQlOO00 1 1 3 -> 101 = 5

NOTE : Just b eca us e the shift a nd rotate instructions
u sed for arithmetic do not forget t h eir use for shift ing
e . g ., s hif ti n g into carry for testing.

Clever multiplication

can be
bits,

We have said that by shifting bits we ca n multipl y by any powe r
of 2 (1,2 ,4, 8, ... , 128) . These are the same va lu es that
represent eac h bit within a byt e . We have shown in Chapter 3
that by ad ding these va lues we can produce any number b e twe e n 0
and 255 .

If we the n multiply by each of these values an d add the
res ul ts , thi s process is th e n e quival e nt to multiplying by a ny
va lue from 0 to 255 , e . g.,

$16 x $59 000 10110 x $59
+ 00010000 x $59
+ 00000100 x $59
+ 00000010 x $59

16 x $59 + 4 x $59 + 2 x $59

95

wh i ch we know how to work out from ou r pr ev i ous multip l i ca tion .

This is the a lgo r ithm we will use ge ne ra l ised
mu l t i plica tion routine. We will r ota t e (multiply by two) one
numbe r , and add it to total, for each bit tu rned o n in th e
other byte, e . g . ,

in our

10110 X $59
rotate $59 1 o 1 1 @
rotate $59 add to total 1 01!TI0
rotate $59 add to total 1 o 1II 1 0
rotate $59 1 ~ 1 1 0
rotate $59 add to total []]0110

For simplicity ' s sake our ge nera l ised multipli cation routine
wi l l only handl e results l ess t ha n 255 .

To multiply $ lB by $09 t ype :

NEW
APPEND

1
2
3
4
5
6
7

8
9 LOOP
10
11
12
13
14 LOOP1
15
16

Prog r am summary

ORC $0600
PLA
LDA #$lB
STA $03FD
LDA #$09
STA $0JFE
LDA #$00
ROR $03FE
ROL $03FE
LSR $03FD
BCC &LOO P1
CLC
ADC $03FE
BNE &LOOP
STA $03FF
RTS

Li nes 1 - 8 Initialise va lues to be
total to 0. The ROR followed by th e
firs t t i me through but on l y t he ROL is

96

multip l i ed a nd se t
RO L has no ef f ec t
within the l oo p .

th e
the

Line 9 Except for the first time through this multipli es
one of th e numbe rs (2) by eac h time round the loop.

Lines 10-11 Rot a t es th e other numb e r (1) bi t by bit into the
ca rry, a nd then t es ts th e ca rry to see if the other numb e r (2)
s hould be added this time around the loop. If the carry is
c lear, th e pos sibilit y th a t th e number (1) has been s h i ft e d
compl ete ly through (=0 - multipli ca tion is completed) is t e st e d
line 120

Lines 12-1 3 Ad d to the total (in A) the numb e r (2) which is
being multipl ie d by two each time a round the loop.

Li ne 14 If t he branch on line 90 was taken, thi s will
t e st for the e nd o f multipli ca tion (number (1) 0 shifted
compl e tely through). If the branch on line 90 was not taken,
t hi s branch on not eq ual wi ll a lway s be tru e beca use we are
a dding a numb e r (2) grea t er th a n zero to a total whi ch will not
be greater th a n 255 .

Lines 15-16 e nd

NOTE: this multiplic a tion routine is much more
the one given in Chap t e r 7 . By that me thod we
to l oop at l eas t nine times , whe r ea s in this,
a nd us e d 9 as numb e r (1) a nd $1B as number (2) ,
on l y l ooped four times (number of bits neede d
6/0 1) .

WATCH
(What address)? 03FE
ASM
RUN

a nd verify t he r esu lt s .

ef ficient th a n
would have had
had we swa pp ed

we wou ld have
to make 9

Now c ha nge th e numbers in lines 3 a nd 5 wit h DELETE a nd INSERT,
used to perform a differe nt calculation (make sure the a nswe r
is) 256), e.g .,

3 LDA #$06
5 LDA #$ 25

AS M a nd RUN

wi th these values an d again ve rif y th e resu lt s for yourself.

97

Chapter 10 SUMMARY

1. AND

1
01 ~ I~ 1 1 0 1 most often used to mask off bits.

2. ORA

1
01 ~ I~ I 1 1 1 most often used to mask on bits.

3. EOR (exclusive or)

1
01 ~ I~ I 1 1 0 most often used to mask invert bits .

4. BIT performs AND without storing the result.

Z is set or cleared
N becomes bit 7
V becomes bit 6

5. ASL 7 6 5 4 3 2 1 0 Arithmetic Shift Left

CJ'--Fj:J:J j13~ +-0
CARRY

most of1en used to mult iply by 2.

6. ROL 7 6 5 4 3 2 1 0 Rotate One Bit Left

r3:~~~:J
CARRY

7. LSR Logical Shift Right

76543210

o -+F FE rF}~D
CARRY

8. ROR 7 6 5 4 3 2 1 0 Rotate One Bit Right

~E~~
CARRY

98

Chapter 11
Details of Program Counter

The program counter
We ha ve ta lked a l ot a bo ut th e different operations that the
microprocesso r can pe rform, but we h ave said very l itt l e abou t
how it goes about those t asks. Thi s is perfectly a l right,
becaus e in most cases we don ' t nee d to know. I n one case,
howe ver, knowing how th e mi croprocesso r is operating l ea ds us
to a whole n ew category of comma nds a nd a powerfu l area o f th e
microprocessor's capabilities .

The microprocessor contai n s a spec i a l purpose two byte
ca ll e d the program counter (PC), whose so l e job it i s
track of wh ere the n ext instruction is coming from in
I n other words the program co unter co n tai n s th e a ddress
next byte to be l oaded into the microprocessor and us ed
instruct ion.

register
to keep

memory .
of the
as a n

If we agai n turn to our
a n i nstruction (opcode)
(o p era nd), thi s is wha t

post office boxes , each
or t he data/address

ou r p rogra m l ooks li ke :

h o lding e ither
it op erate s on

A9 } 57
LOA #$57

80 } 35 STA 0335

03

60 } RTS

To ' run ' our post office box program, we would go throu g h each
bo x in turn and ac t on the data in the box . Now i magine the re
was a l arge c l ock t ype count e r s h owi ng a b ox a ddres s whic h we
looked at to kn ow whi c h box to fi nd . Norma ll y this counter
would go up one by one, taking the n ext byte in order .
However, i f it wanted u s to move to a new a r ea of the boxes , it
wo uld just flash up the address o f th e n ex t instruct i on it
wa n ted us to find . Th i s is exact ly h ow the JMP command
operates .

99

Storing into the program counter
The instruction JMP $address only l oad s th e t wo byt e
i n to t he program count e r, the nex t instruction i s th e n
from memory at that a ddress , a nd a JMP ha s been exec ut ed .

a ddress
loaded

NOTE: the branch instruction s add or subtract from the program
counter i n a simi l ar way, th ere by crea ting
Howeve r branch instruction s may only be in
-126 .

a ' re l ative ' jump.
the r a nge +129 to

The program counter and
subroutines
If it were possib l e to store the program count er jus t be for e
doing a JMP and changing it to a new address, we would l a t e r be
able to re t urn to the same pl ace in memory by reloadi ng that
stored piece of memory ba ck into th e program counter. In other
words, if we had notic e d th at the post office box counter was
about to c hange, and we noted down the address it s howed (our
current a ddres s) before it changed, we wo uld at some futur e
stage p l ace t ha t back on the program co unt e r a nd re turn to
where we had l eft off.

This of cours e , is a s ubrouti ne struct ure , e .g.,

10 PRINT "H ELLO THER E"
20 COSUB 100
30 PRINT " I ' M FINE"
40 END
100 PRINT " HOW ARE YOU TODAY? "
110 RETURN

'''0 u 1 d P r i n t :

HELLO THERE
HOW ARE YOU TODAY
I'M FINE

We said a t th e beginning of t he book th at
program can be thought of as a s ubroutin e
using t he USR command .

a mac hine l a nguage
called fro m BASIC

You ca n a ls o creat e subrouti nes from
program. They are called using the
comma nd . As whe n ca l l e d from BASIC,

100

within a machine l a nguage
J SR (Jump to SubRo utine)
t o re turn from a mac hine

language subroutine you use the RTS (ReTurn from Subro utine)
command.

Type in the following program:

2
3
4
5
6
7
8
9
10

ASM
RUN

BACK

LOOP

WAIT
DELAY

ORG $0600
EQU $02C8
PLA
INC BACK
JSR WAIT
JMP LOOP
LOX #$FF
DEX
BNE &DELAY
RTS

This program will increment the border color register ($02C8)
and the border will become a mass of different colored
horizontal bars. The vertical height of the color bars depends
on the delay loop in the routine. The bigger the delay the
greater the bars height. Remember that these programs go
extremely fast. This program uses an infinite loop so to get
back to ASM it wil l be nessary to press RESET and GOTO 12.

It is good programming style to use subroutines for two major
reaso ns. First, it is easy to locate and fix errors within
subroutines . Secondly, by using subroutines it is possible to
build up a 'libary ' of useful subroutines for regular us e.

We have sa id that the return address of the routine is stored
away but we have not said anything about how it is stored . We
want some sort of filing system to store this address wh i ch
will give us a number of necessary features.

The stack control structure
Firstly it must be flexible and easy to use. Secondly, we
would like to be able to provid e for the possibility that a
subroutine will be called from within a subroutine (called from
within a subroutine, ca ll ed from). In this case we have
to use a system that will not only remember a return address
for each of the subroutines called, but wi ll also have to
remember wh ich is the correct return address for each
subroutine . The system which we use to store the addresses on
a data structure is called a ' stack '. A stack is a LIFO
structure (Last In First Out). When an RTS is reached , we want
the last address put on the stack to be used as a return
address for the subroutine.

101

Imagine the stack to be one of those spi kes that peopl e
some times keep messages on .

Every time you see a J SR instruction, you copi e d down th e
return address onto a pi ece of paper from th e post of f i ce box
counter . As soon as you had done this, yo u spiked t he pi ece of
pap er on the s tack . If you came acros s a noth er pi ec e 0f pap e r
you mer e l y repea ted th e proc ess . Now when you come across a n
RTS, the on l y piece of pa per yo u ca n take of th e spike (stack)
is t he top one . The o th e rs are a ll blocke d by thos e on top of
t hem . This top pie ce of pap er will a lways contai n th e correct
address fo r t he subroutine t hat you are ret u rning from (the one
most r ece nt l y ca l l ed) .

Subroutines and the stack
Th e JSR a n d RTS commands do this automatica l ly using t he syst em
stack . The stack sits in memor y from $100 t o $lFF (Page 1) a nd
grows downwards. Imagine t he spike turne d up s ide down. This
mak e s no diff e rence to its operat ion. The to p of the stack
(actually t he bottom) is marke d by a specia l pu rpos e reg~ster

wit h in t he microprocesso r ca ll e d th e Stack Point e r (S) . When a
JSR is pe rforme d t he two by t e program coun t er is placed on the
stack a nd the stack poin te r (SP) is decremented by two (a two
byte address is pl ac e d on t he stack) .

BEFORE

AFTER (JSR $PQMN)

Prog ram Counter

SP=XX

Prog ram Counter

$AB

STACK

6j
I $Pq I
STACK

$J K
$AB

SP=XX-2 $CD

$CD

Add ress
$1 (JJili +XX

$MN I

Address
$1 (JJ(JJ + XX
$1(JJ(JJ +XX -1
$1 (JJ(JJ +XX- 2

An RTS ta kes th e top t wo bytes o ff the stac k
to the program c ount e r. The stack point e r
two.

a nd returns them
is increme n te d by

102

.....
.

o 0J

S
T

A
C

K
 O

R
G

A
N

IS
A

T
IO

N

r
-
-
-
-
-
-
-

A

I
X

~
-
-
-
-
-

I-
Y

:

-
-

-
l
 I

-
-
-
-
I

-
-

-
I
 I

I
"
-
-
-
-
-
-
-
T

-
-

-
-
-

-
I

L

-
-

-
-

S
p

n
M

r-
l.

..
!I

'-
--

--
4

-7
--

--
--

-1

~
I

...
...

...
..

N
IN

T
H

 B
IT

P

E
R

M
A

N
E

N
T

L
Y

S

E
T

 S
O

 H
IG

H

B
Y

T
E

 O
F

 A
D

D
R

E
S

S

A
L

W
A

 Y
S

 S
E

 L
E

C
T

S

P
. l\

G
E

 1

S
T

A
C

K
 '

L
IF

O
'

M
A

N
A

G
E

M
E

N
T

 2 S
T

A
C

K
 P

O
IN

T
E

R
 B

Y
T

E

G
IV

E
S

A
D

D
R

E
S

S
 O

F

N
E

X
T

 E
M

P
T

Y

L
O

C
A

T
IO

N
 I

N

P
A

G
E

 1

L
O

C
A

T
IO

N

$
0

1
4

7

o
~

L
A

S
T

 I
N

,

T
O

P
 O

F

S
T

A
C

K
 P

A
G

E

B
O

T
T

O
M

 O
F

S

T
A

C
K

 P
A

G
E

,
~

F
IR

S
T

 O
U

T

S
T

A
C

K
 '

G
R

O
W

S
'

T
O

W
A

R
D

S
 L

O
W

M

E
M

O
R

Y

S
O

O
FF

~

~

S
O

lD
O

S
O

l F
F

$
0

2
0

0

S
T

A
C

K
 '

S
H

R
IN

K
S

'
T

O
W

A
R

D
S

 H
IG

H

M
E

M
O

R
Y

BEFORE

AFTER (RTS)

Program Counter $PQ

STACK

$JK
$AB

SP=YY $CO

Program Counter $AB

STACK

SP=YY+2~

MN

Address
$1ilJilJ+YY+2
$1 ilJilJ+ YY +1
$1ilJilJ+YY

$CO I

Address
$1ilJilJ+YY+2

The follow ing progr am is a n example of calling a subroutine
from withi n a s ubroutine . This is the previous program with an
extra delay being called in WAIT named MWAIT . As a resu l t th e
vertical bars will get higher .

NEW
APPEND

1
2 BACK
3
4 LOOP
5
6
7 WAIT
8 DELAY
9
10
11
12 MWAIT
13 MORE
14
15

ORC
EQU
PLA
INC
JSR
JMP
LOX
JSR
DEX
ENE
RTS
LOY
DEY
ENE
RTS

ASM and RUN th e program .

$0600
$02C8

BACK
WAIT
LOOP
#$FF
MWAIT

&DELAY

#$10

&MORE

One major advantage of th e stac k is that it ca n also be us e d to
store data by using the instructions PHA (Push Accumulator on
stack) and PLA (Pull Accumulator off stack) respectively to
place the contents of the acc umulator on and off the stack.

104

WARNING: make sure you put things on and off the stack in the
correct order or your machine wi ll not speak to you until you
have reset it!

If you use an RTS while there is extra data on top of the

stack, the RTS wi ll return an a ddress made up of the two top
bytes of th e stack, whatever they are .

Let ' s use these instructions to t es t the operation of the
stack. Type :

NEW
WATCH (address? 03FD)

ORG $0600
2 BACK EQU $02C8
3 PLA
4 JSR SAVE
5 INC BACK (border)
6 RTS
7 SAVE PLA
8 TAX
9 PLA
10 STX $03FD
11 STA $03FE
12 PHA
13 TXA
14 PHA
15 RTS

Program summary

Lines 1- 3 Set the ORG, the value of background register and
balance the stack

Lin e 4 JSR - return address (address of n e xt instruction
is placed on stack). Actua ll y it points to the byte before the
next instruction because th e PC is incremented each time before
a byte is ' fetched' from memory .

Lin e 5
just to show

Line 6

Lin es 7- 9

Increme nts screen border colour (see Appendix 6)
that the program has returned satisfactori ly.

end.

Take th e top two byt es of the stack

105

Lines 10-11 Store them l ow byte - high byte at $3FD , $3FE.

Lines 12-14 Return bytes to stack in correct order

Li ne 15 End of s ubrouti ne .

ASM and RUN this program . Change WATCH to test address $03FE,
and RUN again. Put th e results toget her and compare them with
the expected address.

The two instructions TSX (Transfer SP into X) a nd TXS
X into SP) are available to do direct manipualations on
Write a progam with a subroutine within a subroutine,
which save the SP in memory via X to see the change in
a subroutine is called and when a n RTS is executed.

The stack and interrupts

(Transfer
the SP.
both of
SP when

We mentione d in Chapt er 9 the BRK command and its use in
debugging programs by halting them and a llowing you to examine
var iables in 'mid-fli ght'. What the BRK comma nd actually does
is something like th e operation of a J SR . The BRK command
performs a JSR indirect to $FFFE, $FFFF . In other words the
contents of these byt es are placed in th e PC a nd the program
continues there (at a ROM break handling routine). The BRK
command also pushes the value of the processor s t at us code (P)
onto the stack.

This can be done outside the BRK command using the
Processor Status byte) instruction. This all l eads
fairly major area of machine language programming on
130XE - Int er rupts. However we will not cover these
are too advanced for this book but we will attempt to
how, where and why th ey work .

PHP
up

th e
as

tell

(Push
to a
ATARI

they
yo u

In general a n interrupt is sent to the microprocessor by the
comp uter ' s hardware to alert it to something goi ng on in the
outside wo rld which r e quires its atten tion, e . g, a key being
pressed, a rea l time c lock , or graphi cs alerts (see Chapter 12
a nd Appendix 6 respective l y) .

These int err upts are hardware signals and their effec t is to
stop the microprocessor, no matt er what it's doing, and jump to
an interrupt service routine (vi a vec tors at $FFFE a nd $FFFF).

In a similar way to the BRK command a n interrupt stores the PC
on the stack (with th e address of the instruction it was in the

106

micldle of doing - not t he nex t instruction). It
the status register (p) on the stack a nd does an
on the co nt e n ts of $FFFE , $FFFF wh i ch take
interrup t routine .

then stores
indirect jump
it to a ROM

You can co n tro l the interr upt servic e routines to ha ndl e
interrupts fr om c l ock timers o r ot her sources in you r own way ,
to do things such as move objects at a const a nt prede t ermined
speed and i nc rement time of day c locks as we ll as man y other
uses . Some of the methods for doing t h is are described in th e
nex t chapter .

Press RESET to ret u r n the screen to norma l a nd type COTO 12.

Chapter 11 SUMMARY

1 . Program count e r (PC) points to t he next byte in memory
min us one to be us e d as a n instr uction .

2. JMP l oads an address into th e PC.

3 . Branches add or subtract from the PC.

4 . J SR s t ores th e PC on stack and l oa ds t he new address into
t he PC (subrouti ne) .

5 . RTS takes the top two bytes off the stack and loads them
into PC (return address) .

6 . The stack can onl y have things put on at one e nd. They can
onl y be taken off from the same end and in the same o r der they
were put on .

7 . Th e Stack Point er keeps track of t he top of the stack.

RTS
J SR

> SP
> SP

SP + 2
SP 2

8 . PHA, PLA store and retrieve the accumu l a tor f r om the
Be sure to take things off the stack in t he same orde r
went on.

stack .
they

9. TXS, TSX transfer data betwee m t he stack registe r (S) an d
the X register .

10 . BRK PC
St at u s byte
Contents of
(FFFE, FFFF)

- > Stack (2 bytes)
- > Stack

- > PC

10 7

11. PHP, PLP pu sh a nd pull a processor status word on t o the
stack.

12. I n terr upts come from chips external to the microprocessor.

PC
Sta t us byte
(FFFE, FFFF)

- > Stack (2 byt e s)
- > Stack
PC

These a r e p rocessed by t he ROM ha ndling routines .

108

Chapter 12
Dealing with the Operating System

The Kernal

This c hapt er wi ll t e ll you somet h ing about dealing with the
operati ng system of the Atari 130XE . It sits in memory from
$E400 to $FFFF and deals with the hardwar e side of the computer
(the other ROM deals with BASIC) . Th e kernal ROM ac tual l y
starts at $E000 but the first one kilobyte is taken up by the
characte r set. There are routines in the kernal for opening
and c lo s ing files, printing characters to the screen, getting
c haracters from the keyboard, moving the cursor a r o und the
screen , loading and savi n g files and ot her s u ch mundane but
necessary tasks.

In thi s chapter we wi ll give examples of how to use a fe w of
these routines (the Appendices will give c lues to more but the
rest is up t o you) . Armed with these me t hods and t h e
information given in the Appendices (and any other lite r at u re
yo u h ave handy), yo u wi ll be ab l e to create programs that ca n
easi l y a n d effic i e ntly commun icate with the outside world .

On e of the major uses of the kerna l is in dealing wit h
inter rupts. Int er rupts can be caused by peripherals, the sound
c h ip, th e c l ock and many other places . The clock sends out an
interrupt every 1/50 a second (1/60 in th e U.S.A.). This
interrupt is used by the k erna l to updat e the time of day clock
a nd to check th e keyboard for a keypress .

We said in the previous chapter that a n interrupt, as well as
putting a return address a nd the status by t e on the stack,
performed an ind irect JMP on th e contents of memory locations
$FF fE and $FFFF. We said that this was directed to the
operati ng system ' s interrupt handling routine in ROM . This ROM
routine does its work a nd then gives the programmer access t o
the interrupt process by doing a jump through interrupt vectors
pl ace d in RAM at location s $0222, $0223 (low byte high byte
format) . Since these vectors are placed in RAM they can be
changed to point to our program.

109

Our interrupt routine mu s t do one of t wo things . It must
e ither return via th e op erat ing system whe n it is fi nish e d (via
the a ddress that was in the interrupt vector before we c hanged
it) or we must ' clean ' up the sys t em and return pr operly from
a n interrupt. In prac ti ce it i s ge nera ll y eas i er to t a ke th e
f irs t c hoic e . If we do i t on o ur own the program must fini s h
by:

1 . Ta king th e regi ste rs off th e stac k. When the ROM int e rrupt
routine is called it saves all th e registers on the sta c k.
These must be returne d to the registers in the same order.

2. We must re - enable int e rrupt s . Th e ROM routine as well a s
doing a SEI which sets the int errupt flag in th e status
r egister turns off the int e rrupts fro m their sourc e .

3. Do a n RTI (ReTurn from Interrupt).

NOTE: SEI (Set Int er rupt Fla g) will ma ke the microprocessor
ignore any int errupts but will not s top a ny de vices from
issuing interrupt s . Thi s instr uction is exec ut e d a t th e
beginning of the int e rrupt routine by th e 6502 a ut omatical ly to
make sure tha t th e i nt er rupt is not interrupted by another
interrupt. Any time-critica l code s hould have this at the
start of it to stop int e rrupts from int e rfering with it's
timing.

Cli (Clear Interrupt Flag)

Re-enabl e s interrupt s to the 6502 processor . Thi s
is us e d at the end o f some interrupt routines,
interrupt is non time-critical.

RTI (Return From Interrupt)

instruction
or if the

Somewhat like the RTS, this inst ruction removes thos e things
plac e d on th e stack by th e interrupt (st at us byte, program
c ount e r), the r e by r et urning to where the prog ra m l ef t off (with
status byte undisturbe d). This, by restoring th e status byt e
wil l clear the int e rrupt f l ag (it co uld not have been set when
the int errupt was r ece ive d!)

Our samp l e int e rrupt prog r a m which follows is in two parts.
The first part sets up the vertica l blank int e rrupt vecto r a t

110

$0222, $0223; it is ca l l e d once when the program is RUN and
then retu r ns. Th e SEI instruct i on disables interrupts while
th e int e rrupt vector is being changed. Ot he rwis e an int e rrupt
could occur whil e t he routine had onl y ha l f changed the vector
and th e mac hine would crash. After th e vector is cha nged,
int e rrupts are r e - e na bl ed and control is passe d bac k to BASIC.

Th e second par t wh i ch is pointed to by the alt ere d i n t er r upt
vectors, is ca l l e d 50 times a se cond (when a n vertical blank
int er rupt occurs) . All thi s the routine does is invert th e
first 255 characters on th e screen every time a vertical
i n t er r upt happe ns . So the top o f the screen will flicke r
betwee n spaces and CHR$(255) very qui ckly .

NEW
APPEND
1
2
3
4
5
6
7
8
9
10 WRITE
11
12
13 LOOP
14
15
16
17
18
19
20
21 ACCUM
22 XREG

Program summary

Line 2
Lines 3
Li nes 4- 7
Line 8
Line 9
Lines 10- 11
Lin es 12 - 17

ORG $0600
PLA
SEI
LDA #$ 0E
STA $022 2
LDA #$ 06
STA $022 3
CLI
RTS
STA ACC UM
STX XREG
LDX #$ FF
LDA $9C40 ,X
EOR #$ FF
STA $9C40 ,X
DEX
BNE &LOOP
LDX XR EG
LOA ACC UM
JMP $C28A
DFB $00
DFB $00

Balance th e system s tack
Disab l e system interrupts
Point a t th e new int er rupt vector
Re - e na bl e th e interrupts
Re tu r n from th e rout i ne
Save t he acc umul ator a nd X register
Inve rt the first 255 c ha r ac t ers on the screen

111

Lines 18-19 Restore accumu l a t or a nd X reg is ter to their
orgi na l va lue

Line 20 Jump to the normal vertica l bl a nk interrupt
routi ne

Line 21-22 Area to store accumulator and the X register

If you add your own interrupt routine to the machine a n d you
want BASIC to continue fu nc tioning, then you must at th e e nd of
your routine jump t o th e norma l interrupt ro utine . This is
what the JMP $C28A does . Use the disassemb l e r t o study th e
operati ng system and BASIC

THE BEST OF BRITISH TO YOU!

on l y bee n Oh ! The r e is one 6502 instruction whi ch has
vaguely me ntioned. That is NOP (No Operation)
Although it do e s noth i ng it takes a ce rt a in amount
do (two machine cyc l es). It is us ed surpr i s ing l y

instruction .
of time to

often wit h in
a time de l ay loop, or to fi l l a pa t ch within a
you have decided to r emove instructions (bad
Th e va lue for the instruction NOP is $EA .

Chapter 12 SUMMARY

prog r am whe r e
p rogramming !).

1. The Ker na l, wh ic h i s in ROM, ha ndl es th e compu ter ' s contact
with the out si de wor l d .

2 . Kernal resides in memo ry [rom $E400 to $FFFF .

3 . SE I - sets the interrupt flag to false a nd ma kes the 6502
ignore any furt her interrupts.

4. CLI - c l ea rs th e int e rrupt f l ag, re-enab l es int errupts.

5.

6.

RTI
STACK
STAC K

NOP

- > r etur n from interrupt .
-) Stat us byte
- > PC (2 bytes)

- > no operation.

112

Appendix 1
6502 Instruction Codes

These tables should be a constant r e fer e nce while writing
machine language or assembly language programs. There is a
list of every instruction with a description, avialable
addressing modes, instruction format, number of bytes used, the
hex code for the instruction and a list of the status flags
changed as a result of the op e ration.

6502 MICROPROCESSOR INSTRUCTIONS IN ALPHABETICAL ORDER
ADC Add Memory to Accumulator with JSR Jump to New Location Saving

Carry Return Address
AND "AND" Memory with Accumulator LOA Load Accumulator with
ASL Shllt Left One Bit (Memory or Memory

Accumulalor) LOX Load Index X with Memory

BCC Branch on Carry Clear LOY Load Index Y With Memory

BCS Branch on Carry Set LSR Shill Right one Bit (Memory or

BEG Branch on Result Zero Accumutator)

BIT Test Bits in Memory With NOP No Operation

Accumulator ORA "OR" Memory with Accumulat~r

BMI BranCh on Result Minus PHA Push Accumulator on Stack

BNE Branch on Result not Zero PHP Push Processor Status on Stack

BPL Branch on Result Plus PLA Pull Accumulator Irom Stack

BRK Force Break PLP Pull Processor StalUs Irom Stack

BVC Branch on Overflow Clear ROL Rotate One Bit Left (Memory or

BVS Branch on Overflow Set Accumulator)

CLC Clear Carry Flag ROR Rotate One Bit Right (Memory or

CLD Clear Decimal Mode Accumulator)

CLI Clear Interrupt Disable Bit RTI Return Irom Interrupt

CLV Clear Overflow flag RTS Return Irom Subroutine

CMP Compare Memory and SBC Subtract Memory Irom

Accumulator Accumulator With Borrow

CPX Compare Memory and Index X SEC Set Carry Flag
CPY Compare Memory and Index Y SED Set Decimal Mode

DEC Decrement Memory by One SEI Set Interrupt Disable SlatuS

DEX Decrement Index X by One STA Store Accumulator In Memory

DEY Decrement Index Y by One STX Siore Index X in Memory

EOR "ExclUSive -Or" Memory With STY Store Index Y In Memory

Accumulator TAX Transfer Accumulator to Index X

INC Incremenl Memory by One TAY Transfer Accumulator to Index Y

INX Incremenllndex X by One TSX Transfer Stack POinter to Index X

INY Incrementfndex Y by One TXA Transfer Index X to Accumulator

JMP Jump to New Location TXS Transfer Index X 10 Stack POinter
TYA Transler Index Y to Accumulator

113

6502 INSTRUCTION CODES

Aaaembly HEX
Name Add lng Langu.ge No OP Status

Description Mode Fonn Bytes Code Register

ACe NY - B D I ZC

Add memory to Immediate ADC lOper 2 69 · . · .
accumulator wi th carry Zero Page ADC Oper 2 65

Zero Page.X ADC Oper.X 2 75
Absolute ADC Oper 3 6D
Absolute.X ADC Oper.X 3 7D
Absolute.Y ADC Oper.Y 3 79
(IndirecI.X) AND (Oper.X) 2 61
(Indirect).Y ADC (Oper).Y 2 71

AND NY - B D I Z C

"AND" memory with Immediate AND IOper 2 29 · · accumulator Zero Page AND Oper 2 25
Zero Page. X AND Oper.X 2 35
Absolute AND Oper 3 2D
Absolule.X AND Oper.X 3 3D
Absolule.Y AND Oper.Y 3 39
(IndirecI.X) AND (Oper.X) 2 31
(Indirecl). Y AND (Oper.)Y 2 31

ASL NY - BDI ZC
Shlltlell one bll Accumulator ASLA 1 OA · · .
(Memory or Accumulalor) Zero Page ASLOper 2 06

Zero Page. X ASLOper.X 2 16

@1 71615 14 131 21110 H]] Absolule ASLOper 3 OE
Absolule.X ASL Oper.X 3 1E

Bee NY-BD I ZC

Branch on carry clear RelatIve BCCOper 2 90

BeS N Y- BDI ZC
Branch on carry set Relative BCSOper 2 BO

BEQ NY-BD I ZC
Branch on result zero Relative BEO Oper 2 Fa

BIT NY-BD I ZC

Test bits In memory Zero Page BIT Oper 1 24 MM · with accumulator Absolule BITOper 3 2C
7 •

BMI NY-BD I ZC
Branch on result minus Relative BMI Oper 2 30

BNE NY·BDI ZC

Branch on result not zero Relative BNE Oper 2 DO

BPL NV . B D I Z C

Branch on result plus Aelallve BPL oper 2 10

BRK N V · BDI ZC
Force Break Implied BRK 1 00 1 1

BVe NY ·BDI ZC
Branch on overflow clear Relative BVC Oper 2 50

114

A mbly HEX
Nam .. Addr . .. lng Language No OP Statua
Deacrlption Mode Form Byte. Code Reglsler

BVS N V- BDIZ C
Branch on overflow set Relative BVSOper 2 70

ClC N V- BDI ZC
Clear carry lIag Implied CLC 1 18 0

ClD N V- BDIZ C
Clear decimal mode Implied CLD 1 08 0

Cli NV- BDI ZC
Clear inlerrupt lIag Implied Cli 1 58 0

ClV NV- BDI ZC
Clear overflow Ilag Implied CLV 1 B8 0

CMP N V - BDI ZC
Compare memory and Immediate CMP ,..Oper 2 C9 · · .
accumulator Zero Page CMP Oper 2 C5

Zero Page. X CMP Oper.X 2 0 5
Absolule CMP Oper 3 CD
Absolu te.X CMP Oper.X 3 DO
Absolute.Y CMP Oper.Y 3 09
(Indirect.X) CMP (Oper.X) 2 C1
(Indirect). Y CMP (Oper) .Y 2 0 1

CPX N V - BDI ZC
Compare memory and Immediate CPX ,..Oper 2 EO · · .
index X Zero Page CPX Oper 2 E4

Absolute CPX Oper 3 EC

CPY NV- BD I Z C
Compare memory and Immediate CPY,..Oper 2 CO · · .
index Y Zero Page CPY Oper 2 C4

Absolule CPY Oper 3 CC

DEC NV- BD IZC

Decremenl memory Zero Page DECOper 2 C6 · · byene Zero Page.X DECOper.X 2 06
Absolule DEC Oper 3 CE
Abselule.X DEC Oper.X 3 DE

DEX N V - BDI ZC

Decrement index X Implied DEX 1 DA · · byene

DEY NV- B DIZC

Decremenl lndex Y Implied DEY 1 88 · · byene

115

A mbly HEX
Name Addressing Language No OP Status
Description Mode Form Bytes Code Register

EOR NV -BO I ZC
"ExclUSive Or" memory Immediate EaR "'Oper 2 49 · · with accumulator Zero Page EOR Oper 2 45

Zero Page X EaR Oper.X 2 55
Absolute EaR Oper 3 40
Absolule.X EaR Oper.X 3 50
Absolute.Y EaR Oper.Y 3 59
(Indtrec t. X) EaR (Oper.X) 2 4t
(Indtrect).Y EaR (Oper).Y 2 51

INC NV - B 0 I Z C
Increment memory Zero Page INC. Oper 2 E6 · · by one Zero Page.X INCOper.X 2 F6

Absolute INCOper 3 EE
Absolu te.X INCOper.X 3 FE

INX NV-BO I ZC
Increment index X by one Implied IN X t E8 · ·
INY NV - B 0 I Z C
Incremenl lndex Y by one Impiled INY t C8 · ·
JMP NV -BO I ZC
Jump to new location Absolute JMPOper 3 4C

Indirect JMP (Ope'r) 3 6C

JSR NV-BOIZC
Jump to new location Absolute JSR Oper 3 20
saving return address

LOA NV-BO I ZC
Load accumulator Immediate LOA IOper 2 A9 · · With memory Zero Page LOA Oper 2 A5

Zero Page .X LOA Oper.X 2 B5
Absolu te LOA Oper 3 AD
Absolute X LOA Oper X 3 BO
Absolute Y LOA Oper.Y 3 B9
(Induect X) LOA (Oper.X) 2 A l
(Indtrect) Y LOA (Oper). Y 2 B l

LOX NV-B OI ZC
Load Index X Immediate LOX IOper 2 A2 · · with memory Zero Page LOX Oper 2 A6

Zero Page.Y LOX Oper.Y 2 B6
Absolute LOX Oper 3 AE
Absolute .Y LOX Oper Y 3 BE

lOY NV - BO I ZC
Load Index Y Immediate LOY IOper 2 AO · · with memory Zero Page LOY Oper 2 A4

ZeroPage.X LOY Oper X 2 B4
AbSOlute LOY Oper 3 AC
Absolule X LOY Oper.X 3 BC

116

Auembly HEX
Name Addre .. lng Languege No OP Status
Description Mode Fonn BytH Code Register

LSR NY-BOlle
Shi~ right one bit Accumulator LSRA 1 4A 0 · .
(memory or accumulator) lero Page LSR Oper 2 46

[Q]-lj 718 16 14 13 121110f->©
lero Page.X LSROper.X 2 56
Absolute LSR Oper 3 4E
Absolute.X LSR Oper.X 3 5E

NOP NY-BOlle
No operation Implied NOP 1 EA

ORA NY-BOlle
"OW memory with Immediate ORA .. Oper 2 09 · · accumulator lero Page ORA Oper 2 05

lero Page.X ORA Oper.X 2 15
Absolute ORA Oper 3 00
Absolute.X ORA Oper.X 3 10
Absolute.Y ORA Oper.Y 3 19
(Indirec!.X) ORA (Oper.X) 2 01
(Indirect).Y ORA (Oper).Y 2 11

PHA NY-BOlle
Push accumulator Implied PHA 1 48
on stack

PHP NY-BOlle
Push processor status Implied PHP 1 08
on stack

PLA NY-BOlle
Pull accumulator Implied PLA 1 68 · · Irom stack

PLP NY-BOlle
Pull processor status Implied PLP 1 28 ·
Irom stack

ROL NY-BOlle
ROlate one bit leI! Accumulator ROLA 1 2A · · .
(memory or accumulator) leroPage ROLOper 2 26

47654 3210f-K}-J
lero Page.X ROL Oper.X 2 36
Absolute ROL Oper 3 2E
Absolute.X ROLOper.X 3 3E

ROR NY-BOI le
Rotate one bit right Accumulator RORA 1 6A · · .
(memory or accumulator) lero Page ROROper 2 66

Lc£:H765 4 321 oj]
leroPage.X ROROper.X 2 76
Absolute ROROper 3 6E
Absolute.X ROROper.X 3 7E

Rn NY-BOlle
Return from interrupt Implied RTI 1 40 ·
RTS NY-BO l le
Return from subroutine Implied RTS 1 60

117

A ... mbly HEX
Name Add",ulng langu.ge No OP SIJItua
Description Mode Form Byta. Code Regllter

SBC NV- B O I ZC

Subtract memory Irom Immediate SBC ..,Oper 2 E9 · . · .
accumulator with borrow Zero Page SBC Oper 2 E5

ZeroPage.X SBC Oper.X 2 F5
Absolute SBC Oper 3 ED
Absolute,X SSC Oper.X 3 FO
Absolute.Y SSC Oper.Y 3 F9
(Indirect.X) SSC (Oper.X) 2 E1.
(Indirect).Y SSC (Oper).Y 2 F1

SEC NV- BOI ZC

Set carry Ilag Implied SEC 1 38 1

SED NV- S O I ZC

Set decimal mode Implied SED 1 F8 1

SEt N V - S Ol ZC
Set interrupt disable Implied SEI 1 78 1
status

STA NV- SOI ZC

Store accumulator Zero Page STAOper 2 85
in memory Zero Page.X STAOper.X 2 95

Absolute STAOper 3 80
Absolute.X STAOper.X 3 90

Absolute.Y STAOper.Y 3 99
(Indirect.X) STA(Oper.X) 2 81
(Indirect). Y STA (Oper). Y 2 91

STX NV- S O I ZC

Store index X in memory Zero Page STXOper 2 86
Zero Page.Y STX Oper.Y 2 96
Absolute STX Oper 3 8E

STY NV- SOI ZC

Store index Y in memory Zero Page STYOper 2 84

ZeroPage.X STYOper.X 2 94
Absolute STYOper 3 8C

TAX NV- S O I ZC
Transler accumulator Implied TAX 1 AA · · to index X

TAY NV- S O I ZC
Transfer accumulator Implied TAY 1 A8 · · to index Y

TSX NV· BOI ZC
Transfer stack pointer Implied TSX 1 BA · · to index X

.-
TXA NV- SOI ZC
Transfer index X Implied TXA 1 BA · · to accumulator

TXS NV- S OI ZC
Transfer index X 10 Implied TXS 1 9A
slack pointer

TVA NV- BOI ZC
Transfer index Y Implied TVA 1 98 · · to accumulator

118

6502 MICROPROCESSOR OPERATION CODES
IN NUMERICAL VALUE ORDER

00- BRK

01 - ORA - (IndirecI X)

02 - - ???

03- ???

04 -???

05 - ORA - Zero Page

06 - ASL - Zero Page

07 -???

08-PHP

09 - ORA - Immediale

OA - ASL - Accumulalor

OB- ???

OC- ???

00 - ORA - Absolule

OE - ASL - Absolule

OF- ???

10- BPL

11 - ORA - (Indirecl) .Y

12-???

13-???

14-???

15 - ORA - Zero Page. X

16 - ASL - Zero Page .X

17-???

18-CLC

19 - ORA - Absolule .Y

lA - ???

lB- ???

lC -???

10- ORA - Absolule .X

1 E - ASL - Absolule .X

IF -???

20-JSR

21 - AND - (IndirecIX)

22 - ???

23 - ???

24 - BIT - Zero Page

25 - AND - Zero Page

26 - ROL - Zero Page

27 -???

28 -PLP

29 - AND - Immedlale

2A - ROL - Accumulalor

2B- ???

2C - BIT - Absolule

20 - AND - Absolule

2E - ROL - Absolule

2F - ???

30-BMI

31 - AND - (Indirecl). Y

32 - ???

33 - ???

34 - ???

35 - AND - Zero Page.X

36 - ROL -Zero Page.X

37 -???

38 - SEC

39 - AND - Absolule.Y

3A -???

3B -???

3C -???

3D - AND - Absolule.X

3E - ROL - Absolule .X·

3F-NOP

40- RTI

41 - EOR - (IndirecIX)

42 -???

43 -???

44 -???

45 - EOR - Zero Page

46 - LSR - Zero Page

47 -???

48- PHA

49 - EOR - Immediale

4A - LSR - Accumulator

4B -???

4C - JMP - Absolule

40 - EOR - Absolule

4E - LSR - Absolute

4F -???

50- BVC

51 - EOR (Indirecl) .Y

52 -???

53 - ???

54 -???

55 - EOR - Zero Page X

56 - LSR - Zero Page. X

57 - ???

58 - Cli

59 - EOR - Absolule .Y

5A -???

58 -???

5C -???

50 - EOR - Absolule.X

119

5E - LSR - Sbsolule.X

5F -???

60- RTS

61 - AoC - (IndirecIX)

62-???

63 - ???

64-???

65 - ACo - Zero Page

66 - ROR - Zero Page

67 -???

68- PLA

69 - AoC - Immediale

6A - ROR - Accumulalor

6B- ???

6C - JMP - Indirecl

60 - AoC - Absolute

6E - ROR - Absolule

6F -???

70- BVS

71 - AoC - (Indirecl).Y

72 -???

73- ???

74 -???

75 - AoC - Zero Page.X

76 - ROR - Zero Page.X

77 -???

78-SEI

79 - AoC - Absolule.Y

7A -???

7B -???

7C- ???

70 - AoC - Absolule .X

7E - ROR - Absolule .X

7F -???

80- ???

81 - STA-(lndirecI.X)

82 -???

83 -???

84 - STY - Zero Page

85 - STA - Zero Page

86 - STX - Zero Page

87 - ???

88- DEY

89- ???

8A - TXA

88- ???

ac - STY - Absolule

BO - S1 A - Absolule B4 - LOY - Zero Page.X OB- ???

BE - STX - Absolule B5 - LOA - Zero Page.X OC- ???

BF- ??? B6 - LOX - Zero Page . Y DO - CMP - Absolule.X

90- BCC B7 -??? DE - DEC - Absolule.X

91-STA-(lndirect).Y BB-CLV OF-

92- ??? B9 - LOA - Absolule. Y EO - - CPX - Immediate

93- ??? BA- TSX El - SBC - (IndirecI.X)

94 - STY - Zero Page.X BB - ??? E2 -???

95 - STA - Zero Page.X BC - LOY - Absolule.X E3 - ???

96 - STX - Zero Page. Y BO - LOA - Absolule.X E4 - CPX - Zero Page

97 - ??? BE - LOX - Absolule.Y E5 - SBC - Zero Page

98- TYA BF -??? E6 - INC - Zero Page

99- STA - Absolule.Y CO - CPY - Immediale E7 -???

9A- TXS C l - CMP - (IndirecI.X) E8 - INX

9B - ??? C2 - ??? E9 - SBC - Immediale

9C -??? C3- ??? EA- NOP

90 - STA - Absolule.X C4 - CPY - Zero Page EB - ???

9E- ??? C5 - CMP - Zero Page EC - CPX - Absolu te

9F -??? C6 - DEC -;- Zero Page ED - SBC - Absolute

AO - LOY - Immediate C7 -??? EE - INC - Absolute

AI - LOA - (Indirect.X) C8-INY EF -???

A2 - LOX - Immediate C9 - CMP - Immediate FO-BEQ

A3- ??? CA-OEX Fl - SBC - (Indirect).Y

A4 - LOY - Zero Page CB- ??? F2 -???

AS - LOA - Zero Page CC - CPY - Absolute F3 -???

A6 - LOX - Zero Page CD - CMP - Absolute F4 -???

A7 -??? CE - DEC - Absolute F5 - SBC - Zero Page.X

A8- TAY CF -??? F6 - INC - Zero Page .X

A9 - LOA - Immediate 00- BNE F7 -???

AA- TAX C 1 - CMP - (Indrrect) . Y F8 - SED

AB - ??? 02 -??? F9 - SBC - Absolute.Y

AC - LOY - Absolute 03 -??? FA - ???

AD - LOA - Absolute 04 -??? FB -???

AE - LOX - Absolute 05 - CMP - Zero Page X Fc- ,>:n

AF -??? 06 - DEC - Zero Page. X FO - SBC - Absolute.X

BO- BCS 07 - ??? FE - INC - Absolute.X

B 1 - LOA - (Indrrect). Y 08 - CLO FF -???

B2 -??? 0 9 - CMP - Absolu te. Y

B3 -??? OA -???

???Undefined Operation

120

Appendix 2
Hexadecimal to Decimal Conversion
Table

This table can be used to convert up to four digit hex numbers to
decimal.

How to use the table:

1. Divide the number into groups of two digits,
e.g. $F178 -. F1 78

$2A -.2A

2. Take the low byte of the number (from above 78 or 2A) and look it up
in the chart. Find the most significant digit (7) in the column on the
left, find the least significant digit (8) in the row along the top, and find
the box in which the row (7) and the column (8) cross. In that box you
will find 2 numbers, 1123 314881 . These are the values of 78 in the
low byte and the high byte. Since we are looking up the low byte, take
the value 123. Now find the location of the hi h byte of our number
(F1) on the chart. The box here contains 241 61696 . Since we
are now dealing with the high byte, take the value 61696 from that
box and add it to the value we found earlier for the low byte 123.

61696
+ 123

61819 which is the decimal value of $F178

NOTE: to find the decimal value of a two digit number, e.g. 2A. look it
up in the chart taking the low byte value (42). For a one digit number, e.g.
E, create a two digit number by adding a leading zero (IllE), and similarly
make three digit numbers four digits with a leading zero.

121

"H ~~~~~~~~~~~~~~~~
~~ , , , , ~ , " , ~ ~ " "

-liH " ~ ~ ~ ~ ~ ~ ~ § ~ 2 ~ ~ ~ ~ ~
!! -O"" ••• :"';': "~""

I ~, 0 ~ , ~ • " , , • iI ~ • , ~ " ~
D 1 : 6 ~ m ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

;!I O ••• • •• ~ ! ! , ! ! I I !
~--~~-i~~+-~~~4-~~I~
~ 0 _ '" .., ., '" 'D ' '" '" ... <Il U a .. J

llE>IO lNV::lI.:lINE>IS lSOIAl

122

Appendix 3
Relative Branch and Two's
Complement Numbering Tables
To c a l c ul ate r e l a tive br a nc hes , l oca t e th e a ddr ess imme diat el y
a f te r th e loca ti on of th e bra nc h in s truc ti on. Co unt th e numbe r
of bytes f rom th e re t o whe r e yo u wa nt t he bra nc h to e nd up. If
th e desti na ti on i s be f ore t he f irs t by t e , u s e th e bac kwa rd
b ra nc h t ab le a nd i f not , u s e th e fo r war d bra nc h t a bl e . Look up
th e di s pl ace me n t(t he numbe r yo u co unt e d) in th e bod y o f th e
ap propr ia t e c ha r t an d r ea d o ff t he hi gh a nd low di g its o f th e
br anch fr om th e s id es . Thi s ca n a l s o be use d in r e ve r se , by
l ooki ng up a b r a nc h on th e s ide s to find th e di s pl ace me nt t a ken
in th e bo dy of t he c ha r t .

To con ver t fr om a si gne d dec ima l numb er bet wee n -128 a nd 127 to
a hex t wo ' s compl e me n t numb e r, fi nd yo ur de c ima l numb e r i n th e
body of th e a pp r opriat e c hart(positives a nd negatives) a nd r e a d
off th e he x t wo' s compl eme nt number f rom th e si de s (hi g h di g it,
l ow dig it) . Th e r evers e pr ocess (t wo ' s c ompl eme nt he x to
signe d dec ima l) i s s i mpl y a ma t t e r of f inding t he hi g h di g i t on
t he co lumn on th e l eft, t he l ow d i g it on th e t op r ow, rea ding
of f th e number whe r e th e r ow a nd co lumn mee t, a n d if in th e
nega tive c ha rt ma ke th e numb e r ne gat ive .

FORW ARD RELATIVE BRANCH POSITIVE NUMBERS

1~ 0 1 2 3 4 5 6 7 8 9 A B C 0 E F

0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
5 80 8'1 82 53 84 85 86 87 88 89 90 91 92 93 9. 95

6 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
7 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

BACKWARD RELATIVE BRANCH NEGATIVE NUMBERS

I~~ 0 1 2 3 4 5 6 7 8 9 A B C 0 E F

8 128 127 126 125 124 123 122 121 120 119 118 117 116 115 114 113
9 112 111 11 0 109 108 107 106 105 104 103 102 101 100 99 98 97

A 96 95 94 93 92 91 90 89 88 87 86 B5 B4 53 B2 81
B 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65

C 64 63 62 61 60 59 58 57 56 55 54 53 52 5 1 SO 49
0 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33

E 32 31 30 29 28 21 26 25 24 23 22 21 20 19 18 17
F 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

123

Appendix 4
Atari l3DXE Memory Map

SOOOO SOOFF ZERO PAGE SDOOO SDOFF

S0 100 SOIFF STACK SD100 SDFFF

S0200 S05FF
VARIABLES USED BY

BASIC AND O.S.
SD200 SD2FF

50400 SD5FF

S0600 S06F F SPARE MEMORY

50600 SD7FF

S0700 S07FF USER BOOT AREA

BASIC PROGR AM
SD800 SDFFF

S07EC S9C1F AREA

S9C20 S9C3F
TE XT ZERO

SEOOO SE3FF

DI SPLAY LIST

SCREEN MEMORY SE400 SE44F
S9C40 S9FF E

IN MODE ZERO

SE44F SFFFF

SAOOO SBFFF
ATAR I BASIC

INTERPRETER

UNUSED MEMORY
SCOOO SCFFF SPACE

124

GT IA CHIP

SHADOW MEMORY

POKEY CH IP

ANT IC CH IP

SHADOW MEMORY

FLOAT ING PO INT

ROM PACKAGE

ATAR I CHARACTER

SET

DEVICE VECTOR

TAB LE

OPERATING SYSTEM

ROM

END OF

MEMORY

Appendix 5
The Screen Chip

The ATARI ' s screen is controll ed by two very powerful chips,
th e GTIA and the ANT I C c h ip . Th ese chi ps generate background,
f oreground , co lor information, process s h ape data, missiles,
and pl ayers . The Antic chip is really a simple programmable
microprocessor with it ' s own indi vid ua l instruction set . The
GTIA chip handles the ge neration a nd movement of p l ayers and
missiles . This chip is controll ed primarly by the ANTIC c h ip .
It e xtends in memory from $0000 to $ 00FF. GTIA stands for
George ' s television int erface adapter. Here is a l ist of the
memory locations assoc iat ed with the GTIA chip and the
functions they p erform .

GTIA Chip
$0000- $0003

These registers p erform a dual function, they contro l the
horizontal position of player s 0 to 3 a nd also indicate with
what p l ayfield a pl ayer has co llided. Writing to th ese
regis t ers in vo kes the first function a nd reading from them the
second. Poking data into these registers wi ll move a player in
the horizonta l posit i on across the scree n. It is possible to
put any va lue b etween 0 and 255 into a register however for the
pl aye r to b e visible it must in the range 48 to 208 . Ot herwise
it wi ll be under th e screen border renderi n g it invis ibl e .
These va lu es will alter from television to t e l e vision.The
register at $0000 is for pl ayer 0 an d so on upwards .

$0004- $0007

These registers perform a n ide ntic a l task to
except that they act on the missiles instead
As a bove, the register at $0004 is for mi ssi l e
upward .

$0008- $000B

the ones above
of th e p l ayers .
ze ro and so on

A player can be set to one of three sizes by pl ac ing a value in
th ese r eg ist ers . The sizes ava ilable are normal, double and

125

quadruple. Th ese size increases are ac hi eved by doubling and
quadrupling th e width of the pixel s in the player. Putting a
zero will set the player to norma l size, a one wi ll double his
size and a three will quadruple it. Reading th ese registers
indicates whether a mi ssi l e to player collision has occurre d.

$D¢¢C

This register sets the size of a ll four missiles. A missil e is
two pixels wide and like pl ayers can be either normal, double
or quadruple size. This register cont ains e ight bits a nd two
bits are ass igned to eac h mis si le to set the size.
table whi ch explai ns how to set th e various
reg i ster to expand th e missile .

Her e
bits in

is a
th e

Missile bits-to- set xl x2 x4

¢ ¢ & 1 2 3
1 2 & J 8 4 12
2 4 & 5 32 16 48
3 6 & 7 128 64 192

Rea ding this register will indicate whether a Player ¢ to
player collision has occurred.

$D¢¢D-$D¢l ¢

Wri ting to thes e registers enables the ANTIC chip to be
effectively bypass e d. Normally when a player is displayed on
the screen t he shape data to be disp l ayed is fetched from an
a rea of RAM automatically by a process called DMA. This
process can be switch ed off and the data fetched from this
register inst ead . Th e limitation is that only one byt e of
shape data can be displayed down the who l e length of the
player. Writing to these r egis t e rs will control players ¢ to
3. Reading from $D¢¢D to $D¢¢F wil l determine whether there
has been a collision between pla yers 1-3 an d a noth er player.
Reading from $D¢1¢ wi ll signa l whether joystick trigger ¢ ha s
been press ed . Normally PEEKing from this register will return
a one but when j oystick zero is pr essed the location will go to
zero.

$D¢ll

This location works th e same as the one above except
works with missil es and only one register is neede d to
four missiles. Only bit pairs are assigned to eac h
because a missile is two bits wide. The bit pairs that
the missiles can be found in the following table:

126

th at it
co ntrol
missile

go with

Missile number bit pairs

0 0 & 1
1 2 & 3
2 4 & 5
3 6 & 7

Re ading thi s l ocation wi ll g ive th e input a t joystick one . As
with joyst i c k zero norma ll y this l ocation wi ll output a one a nd
holding down joyst i c k one wi ll ca us e it to go to zero .

$0012- $0015

These locations cont ro l the co l or and luminanc es of pl ayers 0
and 1. Norma ll y a mis si l e will be th e same color as it's
ass oci a t e pl aye r. However if the four mi ssi l es a re me r ge d
together to f orm a f if t h pl ayer th ey t ake on th e ir own
individual co lor. Rea ding fro m loc a tion $0014 will determine
what kind of tel ev is ion system i s implemented, PAL or NTSC . If
the bits 1-3 equal zero th e n th e system is PAL oth e rwis e if the
bits a r e 1 th e n the system is ru nning NTSC .

$0016-$D019

These registers set the color a nd luminace of of pl a yfi e lds
zero to three .

$001A

This r eg ist er s ets th e co l or an d lumina nce of the backg round.

$00 1D

Use d to se l ec t players, missiles an d lat c h tri gge r input. Bit
o is use d to turn on missil es , bit 1 is for pl ayers a nd bit 2
l atc hes th e trigger inputs . By se t t ing thi s location to ze ro
all pl aye rs a nd missi l es are switche d off .

$D0 1E

Writing t o this r eg ister wi ll c l ea r a ll col li sio n registe rs of
pl ayers a nd missil es .

$D01F

Read ing from this loca ti on wi ll indicate which
keys OPTION , SELECT a nd START are be ing pre ssed.

of t he
Normal l y

thr e e
whe n

of this l ocat ion is read a seve n is returned but press ing one
these keys will sw it c h off a bit. START i s bit 0, SE LECT
bit 1 a nd OPTION is bit 2 .

is

127

Th e ANTIC c hip

The screen disp l ay is generated by the ANTIC chi p whi ch unlike
conventiona l video processors is programmable. ANTIC has it ' s
own instruction set a nd it is onl y necessary to put the prog r am
in memory a nd poin t ANTIC at it . Th e list of i n struction s
which control s the ANTIC chip are cal l ed the disp l ay li st.
Unlike a f ull microprocessor however the instruction set is
ext r eme ly simp l e . The differe n t options are selected by
setting th e right bits i n the instruction. There are four
basic options in th e instructions . They are Display l ist
Interupts, load memory scan, the vertical and horizont al scro ll
registers .

A d i sp l ay li st i n terrupt is invoked by setting bit 7 of an
instruction. When ANTIC comes to exec ut e one of these
ins t ruction s it wil l cause an interrupt to occ ur. A load
memory scan t e ll s ANTIC that the next two bytes fol l owing are
whe r e the text screen memory is positioned . Norma l ly these two
bytes wi ll hold 40000 in LSB/MSB format . This mode is invoked
by setting bit 6 of the instructio n. Setting bit 5 of a n
instruction wi ll e nable fine vertical scro l ling and set ting bit
4 will e na bl e fine horizonta l scrol ling. Setti ng these two
bits onl y e nab l es fi ne scrolli ng it doesn ' t actua ll y cause it.
Bits 0 to 3 are used to specify the graphics mode wante d. The
ANTIC modes a r e functiona ll y identica l to BASIC gra phi cs modes
but just numu ered differently.

Here is the display l ist t hat is normal l y found in BASIC text
mode 0 .

DECIMAL HEX DECIMAL HEX

112 70 2 02
112 70 2 02
112 70 2 02

66 42 2 02
64 40 2 0 2

156 9C 2 02
2 02 2 0 2
2 02 2 02
2 02 2 02
2 02 2 02
2 02 2 02
2 02 2 02
2 02 2 02
2 02 65 41
2 02 32 20
2 02 156 9C

128

The three 112 ' s at th e start of the display list put a border
at the top of the screen otherwise the sc reen would be jittery
or would roll. Th e 66 tells ANTIC th a t the two byt es following
are the address of th e screen memory. Normally in graphic mode
o the s c reen is located at 40000 decima l (40000=156*256+64),
though in act ually fact the screen can live any wh e re. Notice
the bits which are s et in the instruction, bit 6 to signify a
load memory instruction and bit 1 to indicate ANTIC mode 2 or
BASIC's graphic mode ze ro. The 23 bytes that follow are al l
twos and indicate that each line is to be in ANTIC mode two,
which cor ro sponds to BASIC mode 0 . It was not necessary to set
load memory bec a us e this had already been done. The 65 told
ANTIC to jump back to the start of the display list and to use
the following two byt es as an address .

There are two kinds of JMP instructions in ANTIC: JMP
to the a ddress specifi e d in th e following two bytes
when a vertical blank is occurring . A pointer to the
list can be found by:

PRINT PEEK(560)+PEEK(561)*256

Here is a list of the modes available with ANTIC:

ANTIC MODE No-COLORS BYTES/SCREEN
2 2 960
3 2 760
4 4 960
5 4 480
6 5 480
7 5 240
8 4 240
9 2 480
10 4 960
11 2 1920
12 2 3840
13 4 3840
14 4 7680
15 2 7680

o GRAY 4 PINK B BLUE 12 GREEN

straight
and JMP

display

1 GO LD 5 PURPLE 9 LI GH T BLUE 13 YELLOW·GREEN

2 ORANGE 6 RED ·ORANGE 10 TUROUOISE 14 ORANGE·GREEN

3 RED·ORANGE 7 BLUE 11 GREEN ·BLUE 15 L1GHT·ORANGE

TABLE OF COLOR VALUES

129

Appendix 6
The Sound Chip

So und on the ATARI is generated by a chip cal l ed POKEY . This
c hip se r ves a multitude of other purposes including scanning
the keyboard, random number seed, communication with serial
devices and the interrupt source . The POKEY c hip li ves at
addresses $D200 to $D2FF. In actual fact only l ocations $D200
to $D20F are used, the rest of this page is a set of dup l icates
of the first sixteen bytes. Because the POKEY chip controls
the disk drive and tape recorder (and all serial bus activity),
it wil l nee d to be initiali zed after a ny of these devices are
used .

The sound chip has four i nd epe ndant voices .
set the frequency of a note, the volume
noise. The sound chip is se l ected in
storing zero at $D208 and 3 at $D20F.

It is possible
a nd the amount

machine l a ng ua ge

to
of
by

There is a frequency register for eac h of the four voices. It
is not a frequency register in th e co nve nti ona l sense . Instead
of l oading a frequency into this register, you lo a d a va lue
t hat you want t h e sound c hip s input clock frequency divided by .
So the greater th e number, th e l ower the fr e qu e ncy of the
voice. So if a four is loaded in one of these registers, then
for every four ticks of the sound clock a pulse wil l be output.
The four frequency registers are l ocated at $D200, $D202, $D204
and $D206.

Again for each of the voices there is special control register
for volume and distortion (noise). These registers can be
found at l ocations $D201, $D203, $D205 and $D207. Bits zero to
four control the volume level of a voice and bits five to seven
the distortion l eve l. A zero volume is ac hi eved by pu tt ing
zero in the bottom four bits and the loudest volume by putting
in 15. Adding together the volumes of al l the voices must not
resu l t in a number greater than 32 or there wi ll be buzzing.

The ATARI does not have distortion in the r ea l sense.
Distortion in the pro per sense is ge nerated by tugging at th e
waveforms in a contro ll ed manner . On the ATARI it ' s achieved
by simp l y removing pu l ses from the sq uare waveform according to

130

which distortion is chosen. This is really nois e . Distortion
is generated from thre e special counters called poly- counters.
Setting the upper thre e bits in the control registers select s
th e po ly-count er to be us ed. The three poly-counters are four,
five and seventeen bits long .
Here is a table of bit values to put in the control
a nd the poly-counters combinations th ey will select.
any of the bit position s mea ns that it is irre l evant
that position takes on.

registers
An X in

what value

BITS
765

o 0 0 - divide input clock by fr e quency, use 5 bit and 17 bit
poly-counters a nd divid e by two.

o X 1 - divide input clock by frequency, use 5 bit poly- counter
and divide by two .

o 1 0 -divide input clock by frequency, use 5 and 4 bit
po l y- cou n ters and divide by two.

1 0 0 - divide input c lock by frequency, use 17 bit
poly-count er and divide by two.

X -divid e input c lock by frequ ency and divid e by two .

1 1 0 - divide input clock by frequ e ncy, use 4 bit poly- counter
an d divid e by two.

At $D208 there is a control register that works on on
voices . Each of the bits in this location perform a
task. Here is a list of the tasks that eac h of
perform:

all four
particular

the bits

Bit 0 -switches the c lock input between 64 KHz and 15 KHz.

Bit -places a filter into cha nn e l two and clock it with voice
four.

Bit 2 - places a filter into c hannel one a nd clock it with voice
three.

Bit 3 - fuse fr e qu e ncy registers of voices four and three and
us e as sixteen bit frequency register.

Bit 4 - fuse fr eq ue ncy registers of voices two and one and us e
as sixteen bit frequency register .

Bit 5 - use th e 1. 79 MHz system clock as a n input to the sound
c hip on voice three.

131

Bit 6 - use the 1.79 MHz system clock as an input to the sound
chip on voice one,

Bit 7 - set the 17 bitpoly-counter to a 9 bit poly- counter.

This location is very important for controlling the input
frequencies of the voices. It is possible to set the
frequencies to 1.79 Mhz (the system clock), 64 KHz and 15 KHz.
Do this using by changing bits 0, 5 and 6. This greatly
expands the range of achievable notes. Another method of
expanding frequency range is to increase the size of the number
that you divide into the main input frequency. Normally the
number divided into the frequency is in the rang e O-255 but
this can be expanded to 65535 by changing bits 3 and 4.

132

Appendix 7
Memory Usage Directory

PAGE ZERO
ADDRESS
(HEX)

0000 0001
0002 0003
0004 0005
0006
0007
0008
0009
000A 000B
000C 0000
000E 000F
0010
0011
0012 0014
0015 0016
0017
0018 0019
001A 001B
001C
0010
001E
001F
0020
0021
0022
0023
0024 0025
0026 0027
0028 0029
002A
002B
002C 0020
002E
002F
0030
0031
0032 0033

DECIMAL

0-1
2-3
4-5
6
7

8
9
10-1 1
12-13
14-15
16
17
18-20
21 - 22
23
24-25
26-27
28
29
30
31
32
33
34
35
36- 37
38- 39
40-4 1
42
43
44- 45
46
47
48
49
50-51

DESCRIPTION

Vb lank timer va lue
Cassett e jump vector
Point e r to aisk boot address
Temporary size of RAM
Cartridge B insert flag
Warmstart flag
Good boot flag
Disk boot vector
Init pointer [or disk boot
Pointer to top of memory
Shadow for POKEY e nab le
Break key press e d 0=pressed
Realtime c l ock
Pointer to dis k buffer
CIO command
Pointer to disk manager
Point e r to disk utilities
Print e r timeo ut value
Points to position in printer buff
Size of printer l ine
Character bei ng output.
Hand l e r index
Th e current device number
Command byte
Result of l ast I/O operation
Pointer to da t a buffer
Pointer to put byt e routin e
Count for buffer count
Type of fil e access flag
Used by seria l bus routines
Used by NOTE and POINT
Byte being accessed in sector
Temporary storage for char in PUT
Status of current ser i a l operation
Checksum for serial bus operation
Point er to seria l da ta buffer

133

0034 0035 52- 53
0036 54
0037 55
0038 56
003D 61
003E 62
003F 63
0040 64
0041 65
0042 66
0043 0049 67-7 3
004A 74
004B 75
004C 76
004D 77

0050 0051 80- 81
0052 82
0053 83
0054 84
0055 0056 85-86
0057 87
0058 0059 88-89
005A 90
005B 005C 91-92
005D 93
005E 005F 94-95
0060 96
0061 0062 97-98
0063 99
0064 0069 100-105
006A 006B 106
006B 107
006C 006D 108-109
006E 110
006F 111
0070 0073 112-11 5
0074 007A 116-122
007B 123
007C 124
007D 125
007E 007F 126-127
0080 0081 128-12 9
0082 0083 130-131
0084 0085 132-133
0086 0087 134-135
0088 0089 136-137
008A 008B 138-139
008C 008D 140-141
008E 008F 142-143
0090 0091 144-145

Point er past previous buff e r
Number of times to retry I/O operation
Number of device prese nt retries
Indicates buffer is fu ll , 255 =full
Point er to cassette pointer
Type of ga p between records
Fl ag to indicate end of cass file
Bee p count
Nois e flag, used to switch off I/O noise
Fl ag to indicate Time cr itical I/O
File manager zero page variables.
Boot flag for cassette
Fl ag to indicate disk a nd casse tt e boot
Break a bort status
Color attract flag
Temporary register
Left margin of display
Right margi n of display
Current row number
Current column number
Display mode
Pointer to start of screen memory
Old cursor row
Old cursor column
Va lue of character und e r cursor
Point er to current c ursor pos1t1on
Row pointer to DRAWTO point
Co lumn point er to DRAWTO point
Position of cursor in logical line
Temporary information
Page number of RAM top
Character count in screen line
Point er to editor getchar routine
Temporary storage
Justific a tion counter
Tempory registers for plotting
Registers for line drawing
Split screen flag
Storage for character from key board
Temporar y storage
Number of points to draw l ine
Point er to start of Basic l ow memory
Pointer to variab l e name Lis t
Pointer to e nd of variab l e name list
Pointer to variable data va lu es
Pointer to start of BASIC program
Pointer to c urr e ntly execu ting statement
Pointer to e nd of BASIC program
Pointer to COSUB/FOR/NEXT stack
Point er to top of memory used by BASIC

134

!/J!/J92 !/J!/JB!/J
!/J!/JBA !/J!/JBB
!/J!/JC3
!/J!/JC9
!/J!/JCB !/J!/JD1
!/J!/JD2 !/J!/JD3
!/J!/JD4 !/J!/JD9
!/J!/JE!/J !/J!/JE5
!/J!/JE6 !/J!/JF1
!/J!/JF2
!/J!/JF3 !/J!/JF4
!/J!/JF5 !/J!/JFF

PAGE ONE
!/J1!/J!/J !/JlFF

146-2!/J2
186-187
195
2!/J1
2!/J3-2!/J9
21!/J - 211
212-217
224-229
23!/J-241
242
243-244
245-255

256-511

Used by BASIC ROM
Linenumber where program stopped
Error number of last error
Number of spaces between TAB columns
Spare bytes in zero page
Temporary l ocation for calculations
Zero page,floating point acc umul a tor !/J
Second floating point accumulator
More floating point information
Index to character input buffer
Pointer lin e i nput buffer
Temporary floating point registers

System stack

13 5

Appendix 8
Table of Screen Codes
NORMAL VIDEO

FOR TYPE FOR TYPE FOR TYPE FOR TYPE
THIS THIS THIS THIS THIS THIS THIS THIS , , , , , , , ,
[!J GTRL , ~ GTR L J [j] GTRL T IE ESG GTR L +

[E GTRL A ~ GTRL K ~ GTRL U ~ ESG GTRL ;,

[]] GTRL B [!] GTRL L [[] GTRL V ~ GTRL

[!] GTRL G ~ GTRL M ~ GTRL \.J [tl GTRL ;

[fJ GTRL D [;1 GTRL N ~ GTRL X I SHIFT =

[i] GTR L E [i] GTR L 0 [j] GTRL Y ~ ESG
SHIFT

[2l GTRL F [tJ GTRL P ~ GTRL Z GLE AR

tsJ GTRL G ~ GTRL Q ~ ESG ESG ~ ESG DELETE

~ GTR L H 8 GTRL R ffi ESG GTRL - ~ ESG TAB

[j GTRL I ~ GTR L S [ij ESG GTRL =

136

I NVERSE VIDEO

I
FOR TYPE FO R TYP E FOR TYPE

THI S THIS THIS THIS THIS TH IS , , , , , ,
D ,k CTRL , ~ A CTRL 0 ~ ESC

SHIFT

G A, CTRL A G A, CTRL P I NSERT

11 II- CTRL B ~ ;k CTRL Q ~ ESC
CTRL

~ Ik CTRL C = Ik CTRL R TAB

a IkCTR L D C] Ik CTRL S ~ ESC
SHIFT

~ II- CTRL E D A, CTR L T TAB

~ II- CTRL F ~ II- CTRL U C II- CTRL

~ II- CTRL G [J A, CTRL V 0 II- CTRL ;

~ Ik CTR L H C IkCTRL W D Ii, SHI FT =

~ ;k CTRL I ~ II- CTRL X [;3 ESC CTRL 2

~ II-CTRL J [) Ik CTRL Y t1 ESC
CTRL

~ Ik CTRL K ~ Ik CTRL Z DELE TE

~ II- CTRL L ~ D ESC
ESC CTRL

iii SHIFT
II- CTR L M DE LETE

~ Ik CTRL N

137

Appendix 9
Current Key Pressed

Location 754 stores the l ast key pressed . Only one key may be
pressed a t a time and if two are pr essed then th e first one hit
wi ll register. This l ocation holds th e value of the hardware
register read a nd not the actual ASCII va lu e of th e key
pressed. This memory locatio n is a shadow location. The value
of t he last key press ed will r emain a t this l ocation until it
is c l eared by a POKE or a nother key is pressed. Here is a
tabl e of the values returned by PEEKing this location.

Key

ESC
1
2
3
4
5
6
7
8
9
I/;
(
)
Bk sp

Value

28
31
31/;
26
24
29
27
51
53
48
51/;
54
55
52

Key Value

TAB 44
Q 47
W 46
E 42
R 41/;
T 45
Y 43
U 11
I 13
o 8
P 11/;

14
15

RETURN 1 2

Key

CTRL
A

S
o
F
G
H
J
K

L

+

CAPS

138

Va lue

NOTHING
63
62
58
56
61
57
1
5
I/;
2
6
7
61/;

Key Va lu e

SHIFT NOTHING
Z 23
X 22
C 18
V 16
B 21
N 35
M 37

32
34

/ 38
INVERS 39
SPACE 33

Appendix 10
ALPA + Disassembler

?\LFA

10 CLR :BOSUB 1000
12 BOSUB 12000
2 0 G05UB 17 00:IF NL=1 THEN RETURN
30 PAS=I:FOR ZI=1 TO NL-l:GOSUB 2000:GOSUB 2500:GOSUB 3000:GO

SUB 411!00
70 IF TYPE=1 THEN B05UB 5000
8 II! IF TYPE=2 THEN BOSUB 3511!0
90 GOSUe 7000:GOSUB 7500:NEXT ZI
20121 RE~1 PASS 2
2 1215 N(>I
21121 PA5=2 :FOR 11=1 TO NL-l:G0 5 UB 2 011!0:GOS UB 250121:G05UB 401210
225 IF TYPE=1 THEN GOSue 5000
23121 IF TYPE= 2 THEN GOSUB 35011!
235 BOSUS 7(2)12)12):NEXT ZI
2 40 BOSUS 7600:RE1URN
1(12)12) REM INIT SYSTEM
1(112) DIM LINE$(812) ,CODEl' (3) ,INFOS$(212) ,OF'ERl(15) ,CHAR$(I) ,H,"(!6

) ,HZS (4) ,ENI (100) ,5Tl (100)
1012 DI~l TEXTl'(10011!) ,FHf(411!) ,~IAND:f(18) ,r'IOR ,f(18) ,A:f(3) ,OTABLE$(8

45) ,VA$(9) .HX:f(2) ,CHS(I) ,MEMS(6) ,DIRE$(12)
1015 OSIZE=15:NDIR=4:FG=111!0
1020 D rr'1 HEX$ (2) ,SYSS (III!) ,SYI'IBOL cl' (220) , LI~BEL:f· (10) , LVALUE$' (4) ,r'lE

M(F(3)
10311! Hl'="012:3456 789ABC DEF"
1035 NL=I:EPOIN=I:SYMBOL:f(I,I)=CHRS(0)
1037 D I F,Ect=" DFBDFVIEQUORG"
1045 POIN=I:ST=1
1050 NMODE=11:FR=1
1060 T Nf' IJS ,f =" ~ ~ .•. ~ ~ • . • ~ ~ ~ , •. •. ~ • ~ • A • ~ .• "

1500 DATA 104,104,1 33 ,213,104,1 33 ,212
1510 DATA 1~4,37,213,133,21 3 ,104,37,212,133,212,96

1530 FOR 1=1 TO 18:READ A:MANDS(I,II=CHRS(A):NEXT I
1540 MOR$=MAND$:MORS(9,9)=CHRS(5):MOR$(14,14)=CHRS(S)
1551/l ()TA8LE~'=" ,~": OTABLE$ (840) =" .": OTASLES (2, 8'll/l) =OTABLE$ (1, 841/l-

1)
1 61/l1/l F~EAD NOF'S
161~ FOR 1~1 TO 84~ STEP OSIlE
1631/l READ A$,ADDR,N:Ml=INT(ADDR/256):Ll=ADDR-(Ml*256)
165~ OTABLES(I,I+2)=A$:OTABLE:f(I+3,I+3)=CHR$(Ll):OTABLE$(I+4,1+

'+) =CHR$ (~11)
1690 FOR J=1 TO N:READ A:IJTABLE:f(I+4+J,I+4+J)=CHRS(A):NEXT J:NE

1699
17<111<1
1705
17l\~

1999

XT I
RETURN
REM INTT ASSEMBLER
ST=I:PC=IIl:EPOIN=1:SYMBIJLS(1,11=CHR$(IIlI:V=0:NC=I:SYSL=1Il
FOR l=iIl TO FG:MEM(I)=I/l:NEXT I
RETURN

139

2~~~ REM INTIALIZ E VARIABLES IN LINE
2~J~5 1..1 NEof·~" " : U:~~III: FLA(;=III
201121 ERR=IlJ: AOOr,=IZI: 1 NFOSS=" " : MEt-1S=" ~ ~"
2121c;1il TYF'E~~: CHARS"'" " : OPER:;";" "
2IlJc;~ MoDE= 1: CODE:t=" .~ A " : HX$·=" A ~"

2499 F:E.TUF:N
25 111111 REM GET LINE
251215 STl=ST1(Zl):EN1=EN1IZ1):JJ=1
25 11Z1 FOR J=STl TO EN1:LINESIJJ.JJ)=TEXTSIJ.J):JJ=JJ+I :NE XT J:CO

UNT-I EN I-ST1) +2: RETURN
2999 F:ETURN
31211lJ1il REM PROCESS AN LABEL
31Z1~5 CC=I:SYSL~l:LE=LENILINES)

3111 10 Gl1SIJE< 6~)0~: IF CH :t<>"~" THEN SYSlISYSL.. SYSU=CH:t : SYSL=SYSL+
1: GoTo ~,; 01111

311115 SYSL=SYSL-l:IF SYSL<>IZI THEN FLAG=1
3v120 F:ETURN
350111 REM ASSEMBLER DIRECTIVES
351112 OF'ERS=LINE$116.LENILINES»:OP=LENIOPERS)
:351Z15 I r= CoDES=" OFB" THEN 355111 : RETURN
~,511il IF C[JDE~ :t="DFW" THEN 3651Z1: r~ETURN
3515 IF CoDES="EQU" THEN 37111111 :RE TURN
55::r£1 IF CDDE$="m~G" THEN 375111: RE.TURN
3 55111 REM. DEFINE BYTE
.":',J..J,.J [JOSUB 5:::::QHll
3557 IF LENIMEMS) ()2 THEN GO GUB 6011ll :RETURN
3559 HXS=MEMSI1, 2):GDSIJE< 91il0111 :Ml =DEC
356111 BOSUE< 9 11Z11Z1:PUSI 6.7)=MEMSll, 2):MEMINC'=DEC
3565 PC=PC+l:NC=NC+l:GOSUB 93111121:RETURN
365111 REM DEFINE WORD
3655 GOSUB 531211Z1:GOSUB 9100
3661Z1 PUt(6,7)=MEMSI3,4':PU$19,llZl)=MEMSI1,2)
~:';b65 H X :I··=I·Ir:~~1:*, 13,4) : Gm3UB 9001l1: MEM INC) =DF.:C
3670 NC = NC+l:HXS=MEMS(l, 2):GOSUB 920111:MEMINC)=DEC:NC=NC+ l:PC=PC

+2:GOSIJB 930111:RETURN
371210 REM PROCESS EQU
3701 IF PAS=2 THEN RETURN
3702 IF FLAG=0 THEN F'RINT "LABEL •. vJITHoUT ~E[lU": ERR=l: RETURN
3705 GOGUB 5300:GOSUB 930111
37 10 IF CoUNT=2 THEN V=I:HXS=MEM$ll,2':GoSUB 91Z100:PG=DEC:GOSUB

6b0~l: RETlmN
37 15 IF CoUNT=4 THEN V=2:HXS=MEMSI3.4):GOSUB 9001Z1:L.3=DEC:HXS=ME

MSll,2):GOSUB 9000 :M3=OEC :PG=IM3*256)+L3 :GOSUB 6600:RETURN

3720 GO SUB 61Z110 :RETURN
375111 RE~l ORG
3755 GOSUB 531110:GOSUB 931Z11Z1
3760 IF L.ENIMEMS) (> 4 THEN GOSUB 60112l:RETURN
3765 HXS=MEMS(I, 2':GOSUE< 91110121 :Ml =DEC

~57b7 HX·.;:"'I ' lIc.M·l (:~:" 4): liDL:;UB C/1il1il0: l_l=DEC
3770 PC= IMl*256)+Ll:F'Cl=F'C:GOSUB 9300:RETURN
401110 REM PRDCESS OPERATION CODE
4015 CODES=L INESI8.11il)
4020 FOR 1=1 TO (NOPS-OSIIE' STEP OGIIE
4025 IF CODES=OTABLESII,I+2) THEN INFOS S=OTABLESII ,I+OSIZE-I):T

YFE'; 1: f;:ETU['(N
4~J::,0 ~lEXT I
4lin5 1~ 1~ ~1

41il40 FOR 1=1 TO INOIR* 3) STEP 3

140

41ll'f~j IF CODE::f.=D IRE'", (I , 1+2) THEN TYF'E= 2 : RETUI~N
4047 NEXT I
40",0 Ff~ I NT "U~W:NOWI~ .~OPERAT I ON &CODE" : ERR= 1 : RETURN
5 III III III REM F'Rrn:ESS OPERAND
5 III III 5 IF FLAG=1 THEN V=2:PG=F'C:GOSUB 661110
5 III I III IF LEN (LINE:f.) (16 THEN MODE=l:RETURN
511115 OF'ERS=LINE:f.(16,LEN(LINE:f.'):OF'=LENIOF'ERS'
51ll21ll CHARS=OPERS(l,l)
511125 IF CHARS="(" THEN GOSUB 511ll1ll:RETURN
~)"131ll IF CHArU=" it" THEN GllSUB 52011J: F<ETURN
::;035 I F CHAR~: =":f." THEN GOSUB 53 IIJ III : RETURN
5037 IF CHAR:f.="&" THEN GOSUB 541ll1lJ:RETURN
5040 A=ASC(CHARS):IF A>=65 AND A(=90 THEN GOSUS 5500:RETURN
511195 GOSUe 6030iRETURN
51 o III REM F'ROCESS INDIRECTION
5105
5107
51.0[1
5110
::'151<1
5 151
5152

5 153
5 J. 54
:j 1. 56
~~.t 57
5 161ll
5 .1 6 1
51.62
516:;::
5164
5170
5 .1 7 1
~j1.72

51T'.
5180
51.8 1
5182
5190
:0;1."11.
5 192
519:,
5194
521Z10
5 2 05
~~ 2 l !:)
5220
522:i
~i 2 5(l)

~5255

5 2 6fl)
5 2 61

526::i
531110
5::((1~5

5::::.1(2)

53 15
5 3 17
ei319

CC=2:[iOSUB 571ll1ll
IF CH:f.=":t" THEN GOSUB 5150: RETURN
A=ASC(CHS):IF A>-65 AND A(=91ll THEN GOSUe 561l)1IJ:RETURN
[iOSUB 601ll1ll:RETURN
REM F'ROCESS HEX INDIRECTION
COUNT=1
GOSUB 571ll1l):IF TR=I THEN MEM:f.(COUNT,COUNT'=CHS: COUNT=COUNT+
1:(3()TO 51.52
C()UNT=COUNT- l
I r: CH$="," THEN GOSU8 5161Z1 : RETUf~I'j
IF CH:f.=") " THEN GOSUB 5171Z1:RETURN
GOSUe 61ll1ll1ll:RETURN
REM PROCESS INDIRECTION X
IF COUNT(>2 THEN [i()SUB 61llIllfll:RETURN
GOSUe 571ll1ll :IF CHlO<> "X" THEN G()SUe 601ll1ll:RETURN
GOSUB 571llfll:IF CHS(> ")" THEN G()SUe 61Z11111ll:RETURN
t10DE=512: RET URN
REM INDIRECT, Y OR (INDIRECT)
IF CDUNT=4 THEN G()SU8 5181ll:RETURN
IF C()UNT-2 THEN GOSUe 5190:RETURN
GOSUe 61ll1111:RETURN
REM PROCESS ABSOLUTE INDIRECTION
GOSUe 571ll1Zl:IF CH:f.="" THEN M()DE=11I124:RETURN
GOSUB 61ll1ll1l1:RETURN
REM PROCESS INDIRECT,Y
GOSUB 57111111: I F CH~'(:>"," TH~:N GOSI.JB 6 III III III : r~ETURN
GClSUB 57flllll :IF CHS<> "Y" THEN GOSUS 601111ll:RETURN
[i[),:iUB 571Z1111: IF CHlO< >"" THEN GOSUB 6111(l)fll: RETURN
t'IDDE=256 : RETURN
r~EM Pf~DCESS IMi"IEDIATE DATA
MDDE=2
CHARSo~m:·ER:f. (2,2)
IF CHliR:f.=":f." THEN GOSUB 5250: RETURN
G()SUe 6111111l:RETURN
REM PROCESS IMMEDIATE HEX DATA
HXS=OPER$13,LENIOPERS»
IF LEN (HXS»2 THEN GOSUB 6(l)ll11:RETURN
IF LEN (HXS' (2 THEN HX$(2,2'=HXS(l,l):HXS(l,l)="IIJ":GOSUB 9(l)
IZIIll:IMM=DEC:RETURN
GOSUe 91ll1ll1l1:IMM=DEC:RETURN
REM GENERATE HEX MEMORY OBJECT
CC=2:COUNT=1
GOSUB 57111111: IF TR=1 THEN MEM$IC()UNT,COUNT'=CHlO:COUNT=COUNT+
1: GOTO 5 ::; I (;)
COUtH=CClUNT-l
IF CH:!:="," THEN GDf:1IJB 575(l): RETUF~N
IF CH:f.="" THEN GOSUe 5811l1ll:RETURN

141

5321 Pf~ INT "ILL.EGI\L. .~CHARACTER A I N .~OPERAND": ERR= 1: RETURN
541Z111) fiE.t-l FlELATlVE BRANCH
5411)1 Ci-IARS=OPERS(2,2)
541Z12 IF CHARt=" of." THEN GOSUB 54 1 III : RETUr~I'l
541114 IF CHAF.;:t >=" A" AND CHARS < =" Z" THEN GOSU8 54511): RE TLiRN
5411)6 GOS UB 61Z1711l:RETURN
54 11Z1 REM PROCESS HEX LA8EL
541 2 CC=3 :COUNT=1
5414 GOSU8 5711)1ZI:IF TR=1 THEN MEM$(COUNT,COUNT)=CHS:COLlNT=COUNT+

1 : (,OTD 5'114
5415 COLlNT=COLINT-l
~j416 IF CHoV ·:'· "" THE.N GOGUB 61Z1111l:RETUf~N

5419 MODE=21Z148:RETURN
54511) REM RELATIVE LABEL
5451 LA8ELS (I,l) =CHARS :LSIZE=2 : CC=3
5453 GOSLlE< 681Z11Z1:IF TR=1 THEN LABELS(LS I IE, LSIZE)=CHS:LS IZE=L.S I I

E+l:GOTO 5453
5455 LSIZE=LSIZE-l:GOSLIB 671Z11Z1
5457 IF FOLlND=1 THEN MEMS=LVALLlE$:GOSUB 5416:RETURN
5'''09 IF P(.\S"2 THEN ",OSLIS 6~J85: RETURN
54611) t- IE~IS= " IZIIZIIZIIZI": COUNT=4: GOSUS 54 16: RETURN
5499 RETUF:N
551Z11Z1 REM PROCESS LABEL IN OPERAND
551£) 1. LABELS: (1 , 1) =CHAR :~: LS I ZE=2: CC=2
551Z13 GOSLlE< 681Z11Z1:IF TR=1 THEN LABELS(LS IZE,LS I lE)=CHS:LSIlE=LS IZ

E + 1 : GOTO 5c;II):5
551Z15 LSIZE=LSIZE- l: GOS LIB 671Z11Z1
5515 IF FOUND=1 THEN MEMS=LVALUES:GOSLIB 5317:RETLIRN
55 19 I F PAS=2 THEN GOS UB 61Z185 :RET URN
5521Z1 ~lEM -*: ~ " 1ZI1ZI1ZI~1" : COUNT=4: GOSLIB ~_j::) 1 7 : RETURN
5601Z1 REM LABEL INDIRECTION
561£)1 LABELSC1,1)=CHS:LSIZE=2:CC=3
561Z13 GOSue 681Z11Z1:IF TR=1 THEN LABELS(LSI ZE,LSIlE) =CHS:LSI ZE=LSIZ

l::: + 1 : GOTO 561Z13
561Z15 LSIZE=LSIZE-I:GOSUB 671Z11Z1
56111) IF FOUND=1 THEN MEMS=LVALLlES:GOSUB 5154:RETURN
5612 IF PAS=2 THEN GOSLIB 61Z185:RETLIRN
5615 I'IEM$=" illIZI" : COLJNT=2: GOSLIB 5 154: RETURN
57 IZI III REM GET CHAR FROM OPERAND
571Z15 TF:=I£): CHS=""
5711Z1 IF CC>OP THEN RETURN
5715 CHS=OPERS(CC,CC):CC=CC+l:A=ASC(CHS)
57211) IF A) =65 AND A(=711l THEN TR=l:RET LIRN
57311l IF A) =48 AND A<-57 THEN TR=I:RETURN
5735 nETURN
57511l REM PROCESS AN INDEX REGISTER
57~j5 GOSU8 ~j7Q)eJ

~i7611l IF CHS="X" THEN GOS LIB 57811l:RF..TLlRI~

:=;765 I F CHS~" Y" THEN GD!3UB 57r,>~1: RETURN
577111 F'R I NT "I LLEGAL A INDE X AREG I STER AFOLLOW I NG ~ VALUE" : ERR= 1: RE TLIR

N
5781Z1 REM DETERMINE IF ZERO /ABSOLUT E X
5785 IF COUNT=2 -THEN MODE=B: RETUFlN
5787 IF COUNT=4 THEN MODE=64:RETLIRN
5789 BOSUB 61l111£):nETLIRN
57911) REM DETERMINE IF ZERO/ ABSOLUTE Y
579:5 IF CDUNT=2 THEN MIJDE=16: R~:TlJRN
5797 IF COUNT=4 THEN MODE=128:RE1URN
5799 GOSLIB 6I1JII1J:RETURN
58 III III REM DO ABSOLUTE on ZERO PAG~ HEX
581£)5 IF -CCruNT=2 lHEN MODE=4 :RETURN

142

5810 IF COU NT=4 THEN MODE-32:RETURN
5815 GOSUB 6~1~ : RETURN

6000 REM PRINT ERROR MESSAGES
61005 PRINT "ILLEGAL_INDIRECT_INSTRUCTION":ERR-!:RETURN
6010 PR INT "ILLEGAL _HEX IDEC I 11AL _VALUE": ERR-!: RETURN
6020 PR INT "BRANCH _OUT _OF _RANGE": ERF,-! : RETURN
6121 30 F'RI NT "ILLEGAL .~ADDRESSI NG _MODE _W ITH _I NSTRUCTI ON": ERR-!: RET

L1F(N
6070
6080
61218~;

641Fl
651lilZl
65(2)5
65117J
6:515
661Z11Z1
66101

66105
66111J
6615
6617
66 18
66210

6622
662'~

66 26

67100
6711J1
671Z15
671.0
6715
6720
6725

6 730
673 5
6740
6745
6750
677~

6775

6780

6800
68~;::J

68 1/l)
68J.5
682 1Z1
613 ;~~i

7 IZIIZI 121
70/l)1
7 QHZI 2
71il17J5
712lH')

PRINT "ILLE GAL .~OPERAND": ERR-!: RETUF:N
F'R I NT " MUL.T IPL.Y _DEF I NED _LA~<EL": ERR-!: RETURN
PRINT "UNf<NOWN _SyrvIBOL": ERR- !: RETUR N
IF COUNT<>4 THEN GOSUB 61il!IZI:RETURN
RErvl
CH$= ""
IF CC) LE THEN RETURN
CH$=LINE$ICC,CC):CC=CC+!:RETURN
REM CHECK IF LABEL IN SYMBOL TABLE AND IF NOT ADD TO Ir
LSIZE-SYSL:LABEL$=SYS$: GOSUB 67017J :I F FOUND=! l~EN GOSUB 60
80: RETUF,N
SYMBOL$IEPOIN,EPOIN)=CHR$ISYSL):EPOIN=EPOIN+!
COUNT=!
FOR I=EPOIN TO EPOIN+SYSL-!
SY MB(]L :f I I , I) =SYS$ I COUNT, CmmT)
COUNT-COUNT+! :NEXT I
EPOIN=E POIN+SYSL: SYMBOL$ IEPOIN, EPO IN)=CHR$IV):EPOIN=EPO IN+
!
MSB- INTIPG/256):LSB-PG- IMSB*256)
SYMBOLSIEPOIN,EF~IN)=C~m$ILSB):EPOIN=EPOIN+!

SYMBOL$IEPOIN,EPOIN)=C HR$IMSB) : EPOIN=EPO IN+l: SYMBOL$IEPOIN
, EPOIN)=CHRSI0):RETLIRN
REM SEARCH SYMBOL TABL E
SPClIN-l:FOUND=0
A$=SYMBOL$ISPOIN , SPOIN):A=ASCIA$) : IF A-0 THEN RETURN
IF A()LSIIE THEN SPOI N=SP(] IN+A+4:GOTO 67105
SA=SPOIN:SPOIN=SPOIN+l : CClUNT=!
FOR I =SPOIN TO SPOIN+A-l
IF LABEL$ICOUNT , COUNT) ()SYMBOL $ II,I) THEN 5POIN=SA+A+4:GOr
(J 6 7~15
COUNT=COUNT+l:NEXT I
SP(]IN=SA+A+l :FOUND= !:LSI =ASC ISYMBOLSISPOIN,SPOIN»
IF LSI-2 THEN GOSUB 6771il :COLlNT=4:RETLIRN
IF LSI=l l~EN GOSUB 67Fl~:COUNT=2 :RETURN

RETURN
SPO IN=SPOIN+! :BYTE=ASCISYMBOL$(SPO IN. SPO IN»:PM=BYTE :GOSUB

92W0: LVALUESI3,4)=HXS
SPOIN=SPOIN+ !: 8YTE=ASCISYMBOLSISPOIN , SPO IN»: PM=PM+IBYTE* 2
56) :GOSUB 9200 :LVALUE$ll.2)=HXJ :RET URN
SPO IN=SPOIN+l : BY TE -ASCISYMBClL$ISPOIN,SPO IN»:PM= BYTE:GOSUB

9 2 00:LVALUESI!, 2) = HX$: RETUR N
RE~1 GET CHAR FROM OP ERA ND
n~=~: CH '~:=" "
IF CC) OP THEN RETURN
CH$=(]PER$ICC , CC) : CC-CC+l:A=ASCICHS)
I F A) =65 AND A\ -90 THEN TR-l:RETURN
I\ETU::::N
REM GENERATE OBJECT CODE
IF EI\R= l THEN RETURN
IF TYPE=2 THEN RETURN
ADDR=ASCI INFOS$14 ,4 »+IASCIINFClS$(5 . 5 ».256)
A=USRIADRIMANDJ) .ADDR,MODE):IF A=IZI THEN GOSUB 603 0:RETURN

143

7015
7021iJ
712J25
70,;12J
712J35
712J412J
712J4:5
712J512J
71iJ55
70612J
7flJ6::/
71iJ712J
1015
7081iJ
708:5
712J91il
7~("~j

7099
7499
7500
7~;m

7505
760liJ
7602
761il:"j
76112J
71:,15
76~212J

76:':~5

76:30
7635
76412J
7645
7650
7655
7660
811J50
8055
80b0
El1il65
007111
8100
fl :llll~o
8lllil
8115
81211J
8125
81512J
B155
fH60
8165

8311)1IJ
8 ::;11)5
8.3111)
8315
8~317

8319
850111
85fll5
8510

CClUNT=0
FOR 1=0 TO NMODE
A=USRIADRIMANDS) ,ADOR,2 A I):IF A:>III THEN COUNT=CDUNT+l
A=USRIADRIMANDS) ,MODE,2 A I):IF A< >III THEN GOTO 712J40
NEXT I
OBJECT=ASCIINFOSSI5+COUNT,5+CDUNT»
IF MODE=l THEN GOSUB 01lJ511J:RETURN
IF MODE=2 THEN GOSUB 81111111:RETURN
IF MODE=4 THEN GOSUe 81511J:RETURN
IF MDDE=8 THEN GOSUS 81511J:RETURN
IF MOD8=16 THEN GOSUB 81511J:RETURN
IF MODE=32 THEN GOSUB 8300:RETURN
IF MODE=64 THEN GOSUB 8311J0:RETURN
IF MOOE=128 THEN GOSUB 8 311111J:RETURN
IF MOOE=256 THEN GOSUB 8511J0:RETURN
IF MODE=512 THEN GOSUB 8500:RETURN
IF MODE=1024 THEN GOSUS 83011J:RETURN
IF MODE=212J48 THEN GOSUB 8612J1ZJ:RETURN
I~:ETURN

REM PRINT OUT THE LINE
IF ERR=1 THEN RETURN
F'R I NT pu:r: RE.TURN
REM F'RINT OUT SYMBOL TABL.E
F'R I NT : F'R I NT "SYr'1E'OL 4 TABLE"
SF'OIN=l
AS=SYMBOLSISF'OIN,SPOIN):A=ASCIAS):IF A=0 THEN RETURN
SF'O I N=SF'O I I~+ 1: LABEL:t·=" • ~ . .• 4 •••••• " : CO= 1
FOR I=SF'OIN TO SPOIN+A-1
LABELSICO,CO)=SYMBOL$II,I):CO=CO+l
NI~XT 1.
SPO I N=SF'O I IHA+ 1
Li=ASCISYMBOLSISPOIN,SPOIN»:SF'OIN=SPOIN+l
M1=ASCISYHBOLSISPOIN,SPOIN»:SF'OIN=SPOIN+1
F'RINT U'BEL:t· ;"~. ";

BYTE-H1:BOSUB 9 211l1ll:F'RINT HX$;
BYTE-Ll:GOSUB 9211J0:PRINT HX$:GOTO 7(111)
REM GENERATE IMPLIED OBJECT
GOSUB 9111l12J:MEMINC)=OBJECT
NC~NC+ 1: F'C-PC+ I
BYTE=OBJECT:GOSUB 92011)
PUSI6,7)=HX:t:GOSUB 9311J0:RETURN
REM GENERATE IMMEDIATE OBJ CODE
GOSUB 9111l1lJ:MEMINC)~OBJECT

NC=NC+1:MEMINC)=IMM:NC=NC+l
BYTE=OBJECT:GOSUB 9211l1lJ:PC=PC+2
PU$lb,7)=HX:t:BYTE=IMM:GOSUB 9200
PUSI9,10)=HXS:GDSUB 93011l:RETURN
REM GENERATE OBJECT FROM ZERO
GOSUS 9111l0:MEMCNCI=OBJECT:NC=NC+l
BYTE - UBJECT:GOSUB 921110
PUSI6,7)=HX$:PU$C9,111l)=MEMS:NC=NC+l:GOSUB 9311)1Il:F'C=PC+2:RET
Uf,N
REM F'ROCESS ABSOLUTE
GOSUB 9111)1Il:MEMINC)=OBJECT
NC=NC+l:BYTE=OSJECT:GOSUB 9211)1I):PUSCb,71=HXS
HXS=MEMSI3,4):F'U:t19,11lJ)=HX$:GOSUB 911l1ll1ll:MEMINC)=DEC:NC=NC+l
HX$=MEM$ll,2):PU$112,13)=HXS:GOSUB 911J00:MEMINC)=DEC:NC=NC+
1. : PC=PC"-:,
GOSUB 9311111):RETURN
m~M INDIRECT,Y
GOSUB 9111l0:MEMINC)=OBJECT:NC=NC+l
HX$=MEMSll,2):GOSUB 911J1Il1IJ:MEMINC)=DEC

144

8515
B5~~!l)

8525
B5:'·1lJ
El600
8602
861115
1361 III
f.16 15
El62fll
8625
8627
8630
86:,,5
F3637
8641')
8645
900l?J
9 III III 5
911)11')
9121 15
9 11)2 III

9025

91t)3l?J
91 II) III
9 105

9200
92(7.)5
92 11il
9 3 1lJ0
9305
9 ::;07
9310
9 :3 15
9~;011l

95fll5
9507
9:51119
95 11
951.3

95 15
'1:517
95 19
95:<: 1.
9~)23

952~i

9527
9~)29

9531
9533
9535
'1537
95:3 9

NC~NC+l :PC=PC+2

BY TE = OBJ ECT : GOS UB 9211l0 :PU$C6, 71=HXS
P US C 9 , 111) I =ME I1 $
BOSUS 93012l:RETURN
REM RELATIVE BRANCH
I F PAS=I THEN 86312l
HX$~MEM$C 1, 21 : GOSUB 9 11l1110:MSB=OEC
HX$=MEM$(3,41 :GOSUB 912l1ll1lJ : LSS sDEC
LA=(MSB*2561+ LSB:DI=LA-PC-2
IF Dl) 129 THEN GO S UB 6021lJ :RETURN
I F DI (-126 THEN GOS US 612l212l : RETURN
IF DI(III THEN 01=DI +256
GOSUS 911lJ1lJ : MEMCNCI=OBJECT :NC=NC+ l
MEMCNCI=DI:NC=NC+1:PC=PC+2
BYTE=DI:GOSUB 921lJ1lJ :PU$C9 ,1IlJ I =H XS
BYTE=OB,1ECT: GOSUe 921'J1lJ : P Uct , C 6 , 7 I =HX:l'
GOSUB 931lJ1II:RE TURN
REM CONVERT VA LUE IN HXS TO DEC
A$=HX$Cl,II:GOSUB 9020
DEC=BYTE*1 6 :A$ =H X$C2,21 : GOS UB 91lJ21'J
DEC=DEC+BYTE:RETURN
BYTE=0 :IF AS >=CHRSC481 AND A$(=CHR$C57) THEN BYTE~ASCCA$I-

4r3: r,ETU I~N

IP AS)=C HRSC651 AND AS < =CHRSC7IlJI T HEN BYTE=ASCIASI-55:RETU
f~ l~

GOS UB 6 IlJlllJ:RETURN
REM CONVER T PC TO HE X
M1=INTCPC /2561:BYTE=Ml:GOSUB 9 2 1lJ1II:PUSC1,21=HXS:LI=PC-CM1*2
561 :BYTE=L1:GOSUB 921lJ1lJ :PUSC3,41=HXS :RETURN
REM CONVERT BYTE TO HXS
MSB=INTC BY TE / 161 :LSB=BYTE-IMSB* 161
HX$ll,ll=HSCMSB+l ,MSB+11 :H XSC2 , 2 1= HSC LS B+l,LSB+ 11:RETURN
REM PUT OPERATION
IF SYSL()0 THEN PUSC1 5 ,1 5+SYSL- 1I=SYSS
PUSI 23 , 251-CODES
PU$C 2 8,2B+LENCOPERSII=OPERS
RETURN
REM DATA FOR ASSEMBLER
DATA 56
DATA ADC,lI111lJ6,8,105,101,117,11lJ9,1 25 ,1 21 ,11 3 ,97
DATA AND,1~06,8,41, 37,53 ,4 5,6 1,57 .4 9 . 33

DATA ASL~109 . 5, 10,fll6 , 22 ,14, 30

DATA BCC,2048,l ,144

DATA BCS , 2 048 , I , 176
DA TA BEQ, 2 048,l,240
DATA BIT, 36 , 2 , 36,44
DATA BMI,21lJ48,l,48
DATA BNE, 2 1lJ48,l, 2111B
DA TA SPL, 2 048,l,16
DATA E<Rf< , 1 .1, 011l
DATA BVC, 2 048,l,81lJ
DATA BVS,21lJ4 B ,I,11 2
D?\TA ClX, 1 , 1. , 2 4
DATA CLD ,1,l, 2 16
DIHA CLI ,I,1 ,88
DATA CLV,I,1.184

954 1 DA TA CMP,1~06,8,201, 1 97 , 2 1 3,2fll5,22 1, 2 1 7,209 ,1 93

954 3 DA1"A CPX,38, 3 ,22 4 ,228 , 236
9545 DATA CP Y,38,3 ,1 92 ,1 96, 2 04
9547 DATA DEC,108,4,198, 2 14, 21lJ6 , 222
954 9 DATA DEX,1,1, 2 1112

145

D?\TA DEY, I ,1,1:".6 95::i1.
9553
9555
9557
95~j9

9561
9563
9565
9567
9:;69

DATA EOR,I~~6,8,73,69,85,77 ,93 ,89,81,65

DATA INC,1~8,4,230,246,238,254

DATA INX,I,l,232
DATA II~Y,l,l,2~12l

DATA JMP,112l56,2, 76 ,112l8
DATA .JSR, ~.::;2, 1., :~;2
DATA LDA,112l12l6,8,169,165 ,181,173,189,185,177,161
DATA LDX,182,5,162,166 , 182,174.1912l
DATA LDY,lll2l,5,1612l,164,18~,172,29

9571 DATA LSR,45,4,74,712l,86,78
9573 DATA NOP,l,l,234
9575 DATA [IRA,1~~6,8,9,5,21,13,29,25,17,1
9577 DATA PHA,l,1,72
9579 DArA PHP,l,l,B
9581 DATA PLA,I,I,112l4
9583 DATA ~_P,1,1,412l

9585 DATA ROL,109,5,4 2 ,38,54,46,62
9587 DATA ROR,lI2l9,5,112l6,112l2,118,11I2l,126
9589 DATA RTI,l,l,64
9591 DATA RTS,l,I,96
9593 DATA S8C,1~~6,8,233,229,245,237,253,249,241,225
9595 DATA SEC,I,1,56
9597 DATA SED,1,I,248
9599 DATA SEI,l,l,1212l
9612l~ DATA STA,112l12l4,7,133,149,I41,157,I53,145,129
9612)2 DATA STX,52, 3 ,134,15~,142

961214 DATA STY,44,3,132,148,1412l
9612)6 DATA TAX,l,1,1712l
961218 DATA TAY,I,l,168
9b112) DATA TSX,l,l,IGb
9612 DATA TXA,I,I,138
9614 DATA TXS,l,l,154
9616 DATA TYA,I,I,152
9812)1 INPUT #I,LINES:CDUNT-LEN(LINES)+l:RETURN
1112)12l121 REM APPEND
1112l12l~i PRINT NL:" ~"l: GOSUB 981211
1112)112l IF COUNT=I THEN RETURN
1112115 JJ=I:COUNT=COUNT-l
1(12)212l STI(NL)-FR:JJ-l
1112125 FOR I-FR TO FR+COUNT-I:TEXTS(I,I)=LINES(JJ,JJ) :JJ=JJ+I:NEX

T I
1112)312l EN1(NL)=FR+COUNT-l:FR=FR+COUNT:NL=NL+l:GOTO 1112)12l5
11112)12l REM LIST
11101 IF NL=1 THEN RETURN
11105 INPUT Fl,F2
11112)6 IF F2)=NL THEN F2=NL-l
111112) FOR I-I TO NL
11115 IF I)-Fl AND I (=F2 THEN GOSUB 11125
(11212) NEXT I:RETURN
11125 STl-ST 1 (I): EI~I-[Nl (I)
111312) PRINT I; "."l:FOR J-STI TO EN1:PRINT TEXTS(J,J): :NEXT J:PRI

NT : RETUfil'l
111612l GOTO 115212l
I. 12.'12l fiE!"1 DEl.ETE
1 1. 21215 I NF'UT F 1
112112l IF F1)NL-I·OR FI (l THEN RETURN
11215 IF F1-NL-I THEN NL=NL-l:RETURN
1122~ JJ~Fl:FI=Fl+l

11225 FOR I=Fl TO Nl.
1123121 EN1 -ENl (I) : ST 1 =5T 1 (I) : EN 1 (J J) =ENl : S T 1 (J J) =ST 1: J,:/=J ,J+ 1: NE:X T

I : NL=NL ··· 1 : "E TURN

146

11 3 11l1ll REI'1 INSERT
11 ::',1Il5 INPUT F 1
11 3 1116 IF 'F l) =NL THEN RETURN
11 3 111l Fl=Fl+1
11 3 15 F'RINT Fl:"~"::GOSUB 9E'JIIlI
1 1325 IF COUNT=1 THEN RETURN
1133 11l COUNT=COUNT-l:STl =F R:JJ=1
11 335 FOR I-FR TO FR+COUNT-l:TEXTSII,II=LINESIJJ,JJI:JJ=JJ+1:NEX

T I
11 3411l EN1=FR+COUNT-l
11 345 J=NL-Fl:S0=NL-l:LINK=NL
11 3511l FOR 1=1 TO J
11 355 A=STI ISOI:STIILINKI=A:A=EN1IS01:ENIILINKI=A:SO=SO-I:LINK=L

HW:- l:NEXT I
11 3611l EN1IF11=EN1: STIIF11=STI:FR=FR+COUNT:NL=NL+1:GOTO 11 3 111l
11411l1ll REM t,!\vE
1141115 IF NL-l THEN RETURN
1 141117 eIPER$="": I NPUT OF'ER e~: IF OPER$="" THEN RETURN
114J'" OPEN #2,EI,IIl,OPERS:AS="~"

11415 FOR 1=1 TO NL-l
11 4~:'" EN[=ENI III :STl=ST l III
11425 FOR J-ST1 TO EN1 :A$=TE XT$IJ,JI
114 311l PRINT # 2 ;AS:PRINT AS;
114511l NEXT J
11455 PH I NT 11 2 ;" !-" : PR I NT
1146'" NEXT I:CLOSE H2:RETURN
1151i111l F:EM LO AD
.l [511l5 OF'ER$="": INPUT (WERel : IF OPER$="" THEN RETURN
115[1Il UP EN #2,4,1Il ,0F'ERS
11 5 12 TRAP 1157'"
11 515 FR=l:STl=FR:I=1
[15211l ST [-FR: COUNT-l.: LINE$=" .~~. 4 ~~. ~ •• .• ~. .• & A .• ~ ~ .•

1[525 A'r= " .~":INPUT ~t2;A:t: : IF AS="!-" THEN PRINT :GOTD 11 540
1153 11l LINE$ICOUNT,COUNTI=AS:PRINT A$;
11535 COUNT=COUNT+1:GOTO 11525
113411l COUNT=COUNT-l
11545 EN1=FR+COUNT-l
115511l JJ=I:FOR J=FR TO FR+COUNT-l:TEXTSIJ,JI=LINESIJJ,JJI:JJ=JJ+

l:NE XT J
11555 ST1III=STl :ENI I II=ENl:I=I+l:FR=FR+COUNT
11 5 611l el[nO 115211l
115711l NL=I:CLOSE #2:RETURN
1211l1ll1ll REM COMMAND MODE
1211l1ll5 CLOSE #l:DF'EN #1,12,1Il,"E:"
12~1Il6 SETCOLOR t;IIl,15: SETCOLOR 4,~,m:SETCOLOR 2,IIl,m:F'OKE 82,1Il:F'R

INT .
t211l1ll7 POKE 676,16:POKE 675,8:PDKE 677,16
1211lU'1 l_INE$=" ~":F'RINT " .~ ~"; :GOSUB 9BIIl1
1.211l2 1Z1 IF LII'IE'.t:= "ASM" THEN G05UB 2~ : GOTO 1. 211l 1.1II
12111 3 111 IF L. I I\IE e~ =" APPEND" THEI~ G05UB 1!1II11l1ll: GOTU 12QJ 1 III
1211l41Z1 IF L.INl':$="LIST" THEN GO SUB 111121111:GOTO 12<'11.1II
1211l511l IF LINE$="WATCH" THEN GDSUB 13111V'lIll:GDTO 1.2<'1111l
12055 '[F ' L I NE··t~" I~WATCH" THEN W\=IIl: mno t 2QJ 1 III
12 11l611l IF LII~E 't= "QLlIT" THEN PRINT CHRSI1251 ;: END
12m65 IF L.INE ,~- "NEW· THEN FR= 1.:NL=l:GOTO 12 11l111l
1211llill IF LINE$ ="DELETE" THEN GCiSUB 11 2 111111: GOlD 12 QJ1121
! 2 (~75 IF L I NE$·= " I I~SERT" THEN GDSl.J8 11 511lm: GCJTD 1211l111l
12e1BIlJ IF L I NE$=" RUN" THEI~ GOSUB 13511lm: GOTO 1212)1111
I. 2(l1B5 IF L I NES=" SAVE" THEN GllS LJB 1 1. 4">111: GClTO 121111 III
[2 111B7 IF LINES="LOAD " THEN G05UB 11511111l:GOTO 12QJ 111l
1 21119', mJTCl I. 211l!1Il

147

1.3121(1)(1) REt1 .UHCH
1 :W) 1.121 F'R I I'IT "(WHAT .ADDRESS •.) " ;
1 :".1Il15 I NPLIT HI:1;
t::.1212121 IF LE.NO-IZ$>< >4 THEN PRINT "ADOHESS.I"IU5T .8E.FDUR.DIGITS.LON

G" : RETURN
131213121 HXS-HZSll.2):GOSLIB 9121121121:Ml=DEC
13 12135 HX$- HZ $ (3 .4):GOSUB 9121121121:LlcDEC
131214121 WAT=(Ml*256)+L l :WA=I:RETLIRN
.I351/)~1 REI"! RUN

1351121 JJ=PCl
13515 FOR 1=1 TO NC-l:BYTE-MEM(I):POKE JJ,BYTE:JJ=JJ+I:NEXT I
1 :552121 IF WA= 1 THEN BYTE-PEEr; (WATl : GDSUE< 92121121: PR I NT "~\DDRESS."; Hi.

:t:; " .[<EFORE="; HX$
1353121 A-LlSF< (PC 1)
13 540 IF WA-l THEN BYTE=PEEK (WAll: GOSUE< 9201/): PR I NT "ADDRESS."; HZ

j;; " .AFTER .="; H XS
13551/) RETLlr,N

148

HEXPERT

1 1il1il0 --;. CHR$ (125) : C' : 7 : ? : 7 "ENTER ~CI'ID 4FTJR A_CO~iI"IAND ~SUi"'1I1ARY" : ?

L 1i1l0
1It12liJ
10:, 0
l ltJ 41l1
Hl~,1Il

1060
1070
tl2!8111
191110
2 000
2 1l1Hl
2 III 2 III
21iJ30
2040
2 050
2 1116111
:21l17,1
2112)0
21111J
:21 2 12)
2130
2 1412)

21",0
.3 III III 121
31WJ3
3 11J04
:3 li:l IIJ 5
3 1il1ll6
31iJ98
3 11l112!

:33fl15
33 11il
~: :):21/)

:,:5 3 Iil
3 3 4111
3:,,50
T '· 6 III
.3 412)12)

34112)
.34212)

343121

:.'
1111'1 cr'IIH (50)
DIt·! IiJHAT$ (:C:)

D 11'1 TEST::I· (3)
DI~I HEX,,· 1 16) : HEX.f.="I/)ITJ456789A8CIIEF"
DI~I n: ~IF":t (:'; 1/)

Dnl T :t(::'.I2I)
D I I~I OF-ct: (3)
D111 FIELD$ (11/)

LOCAT J.IJN= 15:, 6
? : 7 CHRS(2 12); :INPUT CMOS
IF LEN(CMD:t) (3 THEN GOSue 511J1IJ1lI:GClTO 2 11J1lI1IJ
IiJHAT$ = CMIH (1 , 3)
RESTORE :"lillim
READ TEST:t ,WHERE
IF TEST$=" XXX " THEN C~lIH="":EiOTO 2 1l1111J
IF TESTS=WHAT:t THEN GOTO WHERE
GOlD 2 (1)40
7 : ? : ? "C"lCirr[;:[;)';~a.3": C' : '>
F:ESTORE 31il1ll11l
READ TEST:t,WHERE
IF' TES T -$="XXX" THEN? : 7 :GOTO 2 (1)01Zl
? TESTS
GfJTfJ 2 1 21Zl
DATA EXI,3112!1Zl
DATA DUM. 3:".12)1IJ
DATA MEM, 63~)12)
D?HA ASC. 341i:1!il
DATA C~1D , 2 11iJ12)
DATA XXX . 21il1ll1il
7 : ? : 7 " TO.RESTART":? "TYFE.~~ •• GOTO~21il1iJ1lI.[RETl.IRNJ ": 7 :?

:EW)
? :? "Sl(-\Fn ~DlJI"'l F' ~A T .• :f" ; : I NF'UT TEi"'IF'$: GOSUB 4500: IF ERROfWLA
G THEN GOSUe 5001:? :GOTO 200111
DUt1P=TEMP
FOR y= 1 TO 22: TEMP~DUt1P : GOSUB 412HlJ0: ? ":t:"; TEI1P.t:; " .• ~";
FOR XX=1 TO 11ll:TEMP=F'EEKIDUMP):GOSUB 3350 :GOSUB 41l100:? lEM
P$CJ ,4);"4";:NEXT XX : ? :NE XT Y:?:? " 7 ";
INPUT TEI'IP •• : I r= TEI' IP:t=" E" THEN :20 III 0
Goro :,,::,, 10
DUMP~DUMP+l:IF DUMP) 65535 THEN DUMP=DUMP-6553 6
f~ETURN

? "START ~ADDRESS ~FDR ~ASCI I A_DUt'IP 4$";: INPUT. TEt'IP$: GOSUB 4500
:IF ERRORFLAG THEN GDSUe 501l11 : ? :GOTO 2000
DU~IP=TE~IP

FOR y= 1 TO 22 : TEMP= DUI1P: GOSUE< 4~11l11l1 : ? " :' ''; TEMP:!: ; " • A. " ;

fCDI"; XX ·:1 TO 3~): TEI'\P=PEEI< <D1.I~IP): DU~IP=DUI'IP+l: IF TEI-' \f'") 122 rm
rEI~IfC' '''' 32 THEN TEi"'IF"=!\SC (" • ")

3440 ? CHRSI TEMP);:IF DUMP)65535 THEN DUMP=DUMP-65535
3450 NEXT XX : ? :NE XT Y
:>16IiJ ':' "7";: INPUT TEI1f'"$: IF TE::~1F":t="E" THEN 2 1i:101Zl
3470 (3C1TO 3 4:!0
'I 0liJ IiJ 'r EI'\F" $= " _~ • _~ ." : X = 1 N T 1 TEI'iF" I 4096)
4 III 1 0 TEMPS(l,l)=r~ XS(X +l, X+ l)

402 0 TE MP=TEMP-X*41l196: X= INT(TEMP/ 256)
403 0 TEMP:t12,2)=HEX$IX+l,X+l)
40'10 l 'EMP=TEMP-X*256 : X=INTITEMP/16)

149

4·Q)~:'fZI

41i.1611l
41lr71l1
'1 5 III III
45111l
452111

4~;3 12!

45411l
461i.)1Il
~jl21lill2!

~)1211l11

6 IiJ III III
6~11211

bliWI?
bIMr:,
61lJWl
61211i.)~j

6 121 III 6
61,7\1217
6~WIB

6 111 III 9
bl21.llll
;,11111
b~) 12
61211 ,3
Ml14
611.\1.5
6111 16
b(~ 17
6~118

6V1l'l
b~2Q)

b~l?l

(.j(,1 2"2.
6~J23

6111 ~, 4

6(125
6026

6111)7

60:;::1'3
6029
6 (I) ',,;1lI
61/r:'1
6\~32
bla :5:3
6v) :YI
~JI/1 ~55

Mn6
6"J~~' "1
6f.1::,B
61iJ.39
61l1'1~1

blll41
6(()42
612143
6(,14A
612)45
bllJ46
61114 7
611148
6fll 4 'i'

TE~1F'$ I :"" :,;) ~HE X $ (X + 1 , X + 1)
TEMP=TEMP-X*16:X=TEMP
TEMPS(4,4)=HEXS(X +.l, X+l) :RETURN
ERRORFLAG=0:IF LEN(TEMP$»4 THEN ERRORFLAG=1:RETURN
TEMP=0:MULT=1:FOR X=LEN(TEMP$) TO 1 STEP -1
T$=TE~IP$ I X , X) : IF T l :)=" 12!" AND T$< =" 9" THEN lEMF'=TEI'IP+\)AL ('1$
)*MULT:GOTO 461l112!
IF T$ <: "A" OR T$) "F" THEN ERRORFLAG=l
TEMP=TEMP+«ASC(T$)-55)~flULT)

MULT=MULT*1 6 :NEXT X ,RETURN
? "Synta >: ~err- or ": : RETURN
? "NDt ,.val id ~he ,, ";: f~ETI.JRN

DIYfr., Eml< , J"J,0
DAH) ORA, B, 1
ntH A X ,111l,0
D!nA X, 1111, (1)

DATA X, till ,Ii.)

Dr·ll'A ORA,l , 1
nATA nm .. ,l ,1
DA TA X, Jill, (1)

nnT(', PHP,llll,lll
DI:,·TA IJHA, 7,1
DATn nsl. . • 1 :~ , \~

DATA X ,11l1,121
DA1A X ,HJ,lil
DATA ORA. 2 , 2
DAT!~ (\SL , ::~ ~ 2
D!-\lA X, lli.l, (1)

DIH?\ Eif"l_, :" " .\
f.)ATI~ [)RI~, 'I , 1
DATA X ,U1,,)
D(,TA X, 10 , iii
1)(\TI-'I X, 1111, III
f)IHI~ ClhA,4,1
D I·H 1-) ASl.. ,,4, .t
DATA X,llll,l<l
DAT{~ CLe,1.I/),1IJ
D "-\T 1-\ ORA, L :: , 2
DIHI4 X ,IIlI,IIl

DIHI', X • 1 li1 ,lil
Uln? x • 1 ill, ~~
D~,Tn ora'" 1 J , :>
DI-,HI 1-\5L, 11 , :.:
DATA X,Hl ,121
I11~TA J s r~ ,(7J. 2
D.-\T(\ /,ND, 8,1
I) 14 H\ X. H~,1ll
DI-<1'(') x , 1 III ,121
D!,' H\ 81 T, 1. , 1
DAH\ AND,1 ,I
DATA RDL. ,I,1
DAfA X, 1. III ,121
DI-\TA F'LF,1.IIl,1lI
DATA AND,7,1
DATA ROt. , I :5 , III
f) (HA X , 11/1, ill
[)I-\TA H.IT,2. 2
1114TA AND , 2, ;':
[lIn!) I":UL , ~, , 2
DAIA X , I III ,0
DATA 81'11 .3, J
[lATA I-)ND, 9,1

150

6~151l1 DinA X ,IIIl,I21
605 1 DATA X ,IIIl,,12!
6iQ52 DATI~ X, 10, III
61i'l5:3 DATA AND,4,1
6054 DIHA ROL,4,l
6Q)~5 DATA X, l1l1,0
tl~::j6 DATA SEC, 10 ,12!
6V157 DATA AND, 12,2
6~158 DATA X, I III ,Ill
612159 I.)l">f"-) X , 1 III ,Ill
61116 III [)AT!~ X, I III ,121
61l1b l DATA AND,ll,2
6062 DATA F<l1L,11,2
bl2163 DATA X, 1 III ,Ill
611164 DATA RT I, 1121, III
612165 DATA EOR,8 ,1
6066 DATA X , 1111,121
blll67 DATA X , 1lll,IIl
6068 [)?\TA X,ll1l,11l
6069 DATA EOR,I,l
612!7121 [)?\TA LSR,I,I
612171 DATA X ,l111,0
611172 DATA FHA, 1121,121
611173 DATA EOR,7,1
6\~74 DATA LSR,13,1Il
607 5 DATA X ,II2!,I2!
611176 DATA JI"1P, V), 2

blll77 lII-)T!,', E[)R~2,2
6078 D!-)TA Lf:iR,~~ , 2

611179 DATA X , 1 III ,Ill
6~lElI21 DATI-) BVC, 3 ,1
6 11181 DATA EOR,9 ,1
6082 DATA X, 11l1, ~l
611183 DATA X, 1 L'l, 12!
6111134 DATA X , 1 III ,Ill
6 11185 DATA EOR,4,l
60136 DAH\ L.f..,R ,'t , 1
6 11187 DATA X, I III ,III
6 III 88 DAHl eLI ,1.0,1Il
6liJ89 DATA EOR, 12,2
6W;1Il DATA X,10,0
b ill'll DATA X, H),0
612192 DI-\TA X , 10 ,Ii)
6 11193 DATA EOR ,11,2
61lJ94 DAH\ LSR,11,2
612195 DATA X,lll1 ,1Il
6111'-;>6 DIH!\ RTS,1.IlI,111
blll97 DATA ADC,B, I
611l9B DIHA X, lVI, III
61219 9 DATA X , 1 (1) ,Ill

611il~1 DAT(~ X , 1 (I) ., (I) 6161 DATA LDA,8,1
6101 DATA ADC,I,1 6162 DATA LDX,7,1
6102 DATA ROR,I,1 6 16"; DATA X, 10, Q)
6112):3 DATA X,ll11,1Il 6164 DA ·TA 1 .. [) Y, 1 , 1
6 1.1114 D?\TA PLA,II11.121 6 165 DATA LDA, 1,1
6 1 III 5 DATA AOC, 1 ,1 6 166 [)AT!~ LOX,I,1
6106 DATA RCJR, 1. :C. , III 6 167 DA TA X, 10, Q)
61 III 7 DATA X,II1l,1Il 6l6B DAHl HW,.lIll.12I

61~1B DATA ,11' IF' ,6, :1 6169 D~HA LDA, 7,1
6 1 III '7 DATA ADC. :' , 2 61711l D(·ITA TAX, 1 III , 121
6 11121 Din II F:DR, 2 , 2 6 171 DA·fA X, 1 III ,Ill
6 111 DATA X. 10, III 61 7 2 D?\TA LDY, 2 , 2
611 2 DATA ENS , 3 ,.\ 6 1 TJ DATA LDA,2, 2
6 11 3 DATA AOC, 9 ,1 6174 DATA LDX, 2 , 2
6 114 DAHl X, H1,1li 6175 DATA X, 1 III , flI
6 11 5 DAH, X, 1 III , III 6176 DATA BCS,3,1
6 116 DATA X,10,0 61 T 1 DAHl 1. .. DA,9,1
6117 DATA ADC,4,1 6178 DAH\ X, 10, III
6 118 DAH\ RDri ,4,1 617 '7 DATA X, 1 III ,Ill
6 11 9 D?\TI~ X • 1 flI, flI 61E111l DATA LDY ,ii, 1
6 1. 2 "-1 D?\TA SE I , 1 III ,flI 6181 DATA LDA,4,1
6 12 1 DIHA ('iDC, 12 , 2 6182 DI·nA L.DX,5 , 1
b 1 2 ~~ DATA X, 10, III 618~j DI\TA X, 10,1Il
61 23 DATA X, 1 flI , Q) 6184 DAH\ CLV,1.111,0
6124 DATA X, 1111, III 6185 DATA LDA,1 2 ,2
6125 DATA ADC,II,2 61B6 DATA T[';X, 1<1,0
61 2 6 DATA ROR,11, 2 6187 DATA X, 10, III
61 27 DinA X , 1 Q), Q) 6188 DAT A L. DY,11. 2
61 2 8 DATA X,II11.Q) 6 189 DATA LDA,II, 2
6 129 DATA STA,B,1 6190 DATA LD X,12, 2
61 3 11l DATA X, 10, III 6191 DATA X , 1 III , III
61 3 1 DATA x, 1 III , III 619 2. DATA CFY,7. I
bl ~:2 DATA STY,1.,1. 61.9 ~5 DATA CMF,B,1
6 n 3 DATA 5 TA,I,1 6194 D~\TA X,10,1Il
6L)4 DATA 5 T X,l,1 6 195 DATA X, 1111,0
6 1:.5 DATA x , 1111 , Q) 61 'l6 DATA CF"(, 1 , 1
6 1 ~: 6 DI-'lH \ DEY, .l1ll, 1ll 6197 DATA cr·w, 1 , 1
6.l37 DATA X , 1111, III 619B DATI~ DEC,I,1
6 1:':fj DATA TXA,J.1Il,0 6J.99 DATA X,II1l,1II
6 139 DATA X , 10, III 621110 DAH\ INY,.l1ll ,Ill
bllllll DIUA STY, ~Z , 2 6 2 1111 DATA Cr1F',7, 1
6 141 DATA STA, 2 , 2 6 2 0 2 DI\TA DEX,llll,0
6 142 DATA ST X, 2 , 2 620 3 DATA X,IIZl,1Il
6 143 DATA X, 1 III , III 621114 DATA CPY , 2 , 2
6 .144 DATA Bce , ::: . l 620 5 DATA Ct-1P, 2 , 2

6 14 5 DATA 5TA,9,1 6 2 1116 DATA DEC,2, 2
6146 DATA X,10,1Il 6 ~' 1Zl7 DATA X,10,1Il

6 147 DATA X,10,Q) 6208 D?\TA BNE,3,1
6148 DAT" S TY,4,1 6 2 1119 DAtA CI1F'. 9,1
6 14 9 DATA 5 TA,4,1 6 2 1. III DATA X,10.0
6 1 ~'; 111 D?\TA ST X , ei,l 62 11 DATA X, 10.0
6 15 1 DATA X,II1l,0 6 2 .l 2 DATA X, Hl , vl

6 1 ~i2 DAH\ TYA ,II1J,QI 62 1. 3 DATA C~W,4, 1

6153 DATA STA, 1 2 , ~? 6 2 14 DATA DEC,4,1

61~A DAH\ TXS,llll,0 6 215 DATA X, 1 III , 0

6 1. 55 DAHl X , 1171, Q) 6 2 16 [lATA CLD, lllJ,1Il

6 15 6 DAHl X, 1<'1 , 0 6 2 1.7 DATA C~IF'. 12 ,2

6 157 DATA 5TA,11 , 2 6 2 18 DI\TA X, 10, III

6 .l 58 Dll l'?\ X,lQl,1Il 62 19 DATA X, 1 III , III

6 159 DATA X, 1111,0 62211l nA TI~ X, 10, III

61611l DAH\ L.D Y , 7 , 1 622 1 DATA CI"IF'. 11, 2

151

6'"')--\""')
.L..::'.L DATA DEC, 1 1. , 2 623 9 DATA X,1.1ZI,0

6223 DATA X, 10,0 62411.1 DATA BEQ, 3 , .1
62'24 Din ?\ CF'X,7 ,1 6241 DATA S ElC, 9 ,1
6 'Z25 DATA 5 BC , B ,1 6 :::4 2 DATA X,llZl,1ZI
6"226 WiT A X,1.1ZI ,0 6 2 43 DATA X , llZ1, IZI
6227 DATA X, 1 III ,IZI 6 2 44 D?\TA X,lll1 ,1II
6228 DATr, CF'X ,1 , 1 6245 DATA SElC , 4 , 1
62 29 DATA SBC , 1,1 6246 D?HA INC,4,1
623 111 DAT(.\ INC , 1. , 1 6247 DATA X , 1111, III
623 1 DATA X, 10, IZ! 6248 DAT?\ SE D,Hl1,1lI
6T,2 DATA INX, 10 , Iil 6249 D!nA S BC,1 2,2
6233 DATA 5E1C ,7,1 b25v.l OAT(.\ X, Iftl, IZ!

62~A DATA NOF', llZ1, IZI 625 1 DArA X, 10,0
6235 DATA X , llZ1 ,0 6252 DAH) X, I Ill , 1ZI
6 236 DATA CF'X,2,2 6253 DATA S8C, 11, 2
62~;7 D!nA SBC , ~~~ , 2 62~:~4 D!\ TA INC,.I J ' ? , ..:..

62:,>8 D(H!\ INC, :;'~ , 2 6 ~~ 55 DATA X , 1 ill ,0

6 :,('1 III ? : ? " ST!\ F:T ~ADDRE f;5 ~ .~"; : I~IF'UT TEI1Fct'
6 :''.1 0 Gr.lSUB 4501Z1: IF EHROF(FLAG THEN GUSUE< 51llIZl .l: ? : GUTl] 21Z11Z11Z1
6 :S21l1 PC",TE MF'
6400 FOR Y-I TO 2 2
6 i l 11Z1 "JHEnE-F'EE I< (FC) +61l11l11l1: RESTORE vJH ERE
642 111 READ OF'S ,FIEL D,ElYTES
64::',0 TE~IF'= PC : G05UB 41Z11l11Z1: ? "t": TEt1F'ct·; " ~" ;
6431 I F BYH:S=~J THEN TEI'1P-F'EEK (F'e) : GOSUEI 41Z100:? TE~IPt (:5,4) ; " ~ A A

A '~"; : GOTO 6440
6432 IF BYTES-l THEN TEMF'-256*F'EEK (PC)+PEEK(PC+l - «PC+l) 65535)*

655:,6» : G()S UB 4ftl~JIZI: ? TEMPt ;" ~AA"; : GOTO 6441Z1
6436 TEMP-PEEK(PC) : GOSUB 41l101Z1: ? TEMPt(3,4);:TEMP-PEEK(PC+l-«PC

+1) 65535)*65536»:G05UEI 41l101l1 : ? TEMPt(3 ,4);
6437 TEMP~PEEK(PC+2-«PC+2)65535)*65536» :GOSUB 41l11l1~

6 4:,,8 ':' TE~IF'$ (3,4) ; " .~ " :
6'1'117.1
64::';17.1
6 Q·60
6'. 7 III
648k1
6"190
650Q1

PC=PC+l:IF PC)65535 THEN PC-F'C- 655 3 6
IF [lPt'= " X" THEI~ ? " ??~' A": GOTO 681l1(l)
? OP,f ;" A A ~ ~" :

RESTORE 8(l)00+FIELD
READ FI EL D$,5TART , REP :IF FiEF' TIIEN FIE LD$(REP,REP)-" ,"
IF START-IZI THEN? FIELDt: GO TO 6800
IF BYTES= l THEN TEMF'-PEEK(PC): PC=PC+ l:I F PC) 65535 THEN PC
F'C- 655 ::::5

6 51Q1 IF BYTE5- 2 THEN TEMP=PEEK(PC)+ 256*PEEK(PC+l) : F'C-PC+2 :IF PC

6512
6513
6~d 4

6 5 2 0
6~':;:; (l)

6~"541ll

6mJ0
68 1 III
6820
800111
80ftll
8 ~112)2

1~01Z1:S

801114
8IlJ(I\~,

8 1il17.l6

) 65535 THEN PC~PC-65535

IF FIELD()3 THEN 65 2 Q1
IF TEMP) 127 THEN TEMP-(TEMP-25 6)
T E ~IP=PC+TEMP

GOSUEI 41Z101l1:IF BYTES= 1 AND FIELD(>3 lHEN TEMPt-TEMP$(3,4)
FIELDtI5TART,START+LEN(TEMPS)-1)-TEMPt
? FI EL.D$
NEXT' Y
':' " ? ":: I rWUT TE~IP$: IF TEI1P$-" E" THEN GO TO 2 00(l)
GOTO 64(1\Q)
DATA $,2,1lI
DATA $, 2,1lI
DATA $ '

DIH!\ $

DATA t
D?\T A S
DATA ($

, 2 ,1l1

*X,2,4
*Y, 2 ,4

) , 3 ,1lJ

152

81110 '1 D(·H!\
BIlIIiJB DATA
8009 D?\T(i
80 1 III DATA
8(1)11 DA'TA
81Z1 12 DATA
81l11 :3 D!H(i

jl '~ , 3 ,(0
($ ·M- X) , 3 , 5
(t) *Y ,3 , 6
,0,0
t *X,2,6
$ *Y, 2 ,6
A,0,1lI

Index

Absolule addressing 9 , 19, 24
Accumulator 7, 8
Addition 34
Addition two byte 41
Addresses 2
Addressing modes 8, 64, 77
ALPA 29
ALPA commands 32
APLA continuing with program intact

50
ALPA label name addressing 49
ALPA memory usage 33
ALPA starting 29
ALPA working with 31
AND 87,88
ASL 91
Assembler 11
Assembly language 11

BCC 55,81
BCD 83
BCS 55,81
BEQ 52
Binary 20
Bits 23,87
BMI 85,86
BNE 54
Boolean operations 87
Borrow 44
BPL 85,86
Branches 51, 52, 54
Break 81
BRK 81
BVC 86
BVS 86
Byte 20

Calling a program
Carry Flag 37
CLC 81
CLD 82
CLI 82
CLV 86
CMP 52,54
Comparisons 51
Converting binary 10 hexadecimal

22
Converting hexadecimal to decimal

25
Counters 62
Counting 54

Debugging 82
DEC 61

153

Decimal flag 82
Division 95
Entering a program
EOR 87

Flags 52

Go to 48

Hexadecimal 19

Immediate addressing
INC 60
Index register 61

10

Indexed addressing 64
Indexed indirect addressing
Indirect addressing 76
Infinite loops 50
Instruction set 11 3
Interrupt 1 04
Interrupt flag 82
Inverting bits 90

JMP 99
JSR 100
Jump 48
Jump conditional 51

LOA 8
Less than 55
Logical operations 87
Looping 59, 60
LSR 95

Machine code 11
Machine language 3
Masks 88
Memory 3
Memory contents 3
Memory map 131
Machine code instructions
Mnemonics 4
Moving memory 7
Multiplication 59
Multiply two byte 93

Negative flag 84
Negative numbers 84
NOP 112

ORA 87
Overflow 86

Peek 3
PLA 104
Poke 4
Prinling 14
Prinling a message 14

9

75

8

Processor status code register 51
Program coun ter 99

Registers
Register to register transfers 76
Relative addressing 52 , 54
Return 3
ROL 94
Rotating bits 91
ROR 94
RTI 110
RTS 5

SBC 44
Searching memory 65
SEC 40
SED 81
SEI 81
Shifting bits 91
STA 10
Stack 101, 102, 103, 104

154

Stack pointer
Status byte
Subroutines
Subtraction

102,104
52,81
1,100,102

43

Tables 71, 74
Tables - zero pages 77
TSX 106
Turning bits olf 88
Turning bits on 89
Two's complement arilhmetic

83, 129
TXS 106

Vectoring

X-registers

78

61,64

Y -regis ters 61 , 64

Zero flag 52, 54, 81
Zero page addressing 9, 24
Zero page indexed addressing 68

Go beyond the limitations of BASIC and write faster,
more powerful space-saving programs using this guide
compiled exclusively for Atari 130XE users.

Atari 130XE Machine Language for the Absolute
Begjnner offers complete instruction in 6502 machine
languagE?'" Each chapter includes specific examples of
machine language applications which can be
demonstrated and used on your own Atari 130XE.

Even without any previous experience in computer
languages the easy-to-understand 'no jargon' format of
this book will make the art of machine language
programming entirely accessible .

Atari 130XE Machine Language for the Absolute
Beginner is the perfect book for anyone interested in
discovering the power and potential of the Atari's native
language.

COMPATIBLE WITH THE ATARI 800XL

£7.95

Melbourne
House
Publishers

ISBN 0-86161-200-0

.,-
-~,;- III 1111

9 780861 612000

	Cover
	Contents
	Foreword
	Introduction to Machine Language
	Basics of Machine Language Programming
	Hexidecimal
	ALPA + Disassembler
	Microprocessor Equipment
	Program Control
	Counting, Looping and Pointing
	Using Information Stored in Tables
	Processor Status Codes
	Logical Operators and Bit Manipulators
	Details of a Program Counter
	Dealing with the Operating System
	Appendix
	6502 Instruction Codes
	Hex to Decimal
	Relative Branch and Two's Compliment Tables
	130XE Memory Map
	The Screen Chip
	The Sound Chip
	Memory Usage Directory
	Screen Codes Table
	Current Key Pressed
	APLA + Disassembler

	Index

